
AITr/GCS/ENG/93D-19 AD-A274 026

D"TIC

DESIGN OF A
SHARED COHERENT CACHE
FOR A MULTIPLE CHANNEL

ARCHITECTURE

THESIS

John A. Reisner, Captain, USAF

AFIT/GCS/ENG/93D-19

Approved for public release; distribution unlimited

D812 22 .10 4 93-30991

IEIInmlIl~

AFIT/GCS/ENG/93D-19

DESIGN OF A SHARED COHERENT CACHE FOR

A MULTIPLE CHANNEL ARCHITECTURE

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University Acce~sie For

In Partial Fulfillment of the NTIS p

DrIC TB
Requirements for the Degree of

Master of Science in Computer Systems
By

John A. Reisner, B.S. Dist c r

Captain, USAF A

DTI0 QUALIY TnSPrCTED 3
December 1993

Approved for public release; distribution unlimited

To my father, a man of wisdom,

a man who imparts wisdom.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank John Armitstead, who worked

on the MCA alongside of myself. He labored very hard to help debug the

simulator while we worked on it. I must admit that he helped me more than

I helped him, but I am sincerely grateful for his patience and his assistance.

Second, I would like to thank my advisor, Tom Wailes. He has done

more than teach me about computer architecture, he has been fun to work

with. In some ways I consider him a friend as well as an advisor.

Third, I wish to mention some previous instructors who challenged

and motivated me, laying the foundation for me to accept an undertaking

such as this. At the risk of omitting a deserving individual, I would like to

name Anne Weber, Leslie Simmons, "Doc" Livingston, Donald Berry, Susan

Assmann, and David Landskov.

Fourth, I would like to thank my committee, Lt Col William Hobart and

Dr Bruce Suter, for their willingness to help me and for providing valuable

input.

Finally, I would like to thank my family, who stood beside me

throughout the entire effort. Luke and Rebekkah have provided frequent

laughter and stress relief, and have kept me focused on what is truly

important. There is coming a day when I will have to give an account of

myself, and there will not be any questions about cache coherency on that day.

My wife, Lori, has been a tremendous support. Proverbs 19:14 is a true

statement, therefore, I know she is a gift from the Lord.

TABLE OF CONTENTS

Page

A cknow ledgem ents .. i

List of Figures ... iii

List of Tables .. v

A bstract .. v i

I. Introduction and O verview ... 1.1

II. Cache Coherency Protocols .. 2.1

IlI. The Multiple Channel Architecture (MCA) .. 3.1

IV. Proposed Coherency Protocol for the MCA ... 4.1

V . Setting U p the Experim ent .. 5.1

V I. Experim ent Results ... 6.1

VII. Summary, Conclusions, and Future Research 7.1

Bibliography .. vii

V ita .. ix

ii

LIST OF FIGURES

Figure Page

3.1 Fully Connected Topologies ... 3.3

3.2 A Generalized Cube Network with Eight Nodes 3.3

3.3 MCA Communication Example .. 3.4

4.1 Directory Maintenance for the MCA Protocol 4.17

5.1 TDM Time Slice Mapping ... 5.3

5.2 Shared Cache Block State Diagram for the
MCA Coherency Protocol. .. 5.10

6.1 Effect of Varying Directory Sizes on the Number of EIBs
for Two of the Bigger Configurations, MATRI[XMULT 128
and FILTER 64. .. 6.4

6.2 Cache Invalidation Pattern for MATRIXMULT 128. 6.5

6.3 Cache Invalidation Pattern for FILTER 64. ... 6.6

6.4 Total Number of EIBs for MATRIXMULT Under Varying
C onfigurations ... 6.7

6.5 Total Number of EIBs for FILTER Under Varying
C onfigurations ... 6.8

6.6 Percent Utilization of the Master CPU as the Directory
Length Increases for the MATRIXMULT Program 6.10

6.7 Percent Utilization of the Master CPU as the Directory
Length Increases for the FILTER Program ... 6.11

6.8 Execution Time for Baseline MATRIXMULT and for
MATRIXMULT with Shared Caching, Directory Size of Zero 6.14

6.9 Execution Time for Baseline FILTER and for FILTER
with Shared Caching, Directory Size of Zero ... 6.15

6.10 Performance Increase Attained by Caching Shared
V ariab les, .. 6.17

6.11 Hit Rate in the Shared Cache for the MATRIXMULT
Program with a 32K Cache and Block Size of 32 Bytes 6.19

iii

6.12 Hit Rate in the Shared Cache for the FILTER Program
with a 32K Cache and Block Size of 32 Bytes ... 6.20

6.13 Effect of Varying Block Sizes on FILTER Completion
T im e ... 6.25

iv

LIST OF TABLES

Table Page

4.1 An Example Write-run of Length 3 ... 4.3

4.2 Percentages of References to Shared vs. Private Data 4.5

4.3 Processors Affected By Invalidation Write .. 4.11

5.1 Baseline Simulation Results, ... 5.13

5.2 Six MCA Configurations Used for Testing .. 5.14

6.1 Number of Clocks (in Millions) Needed to Complete the
Simulation, as the Directory Size Varies ... 6.9

6.2 CPU Utilization for the Master Processor for the Six Test
C onfigurations ... 6.18

6.3 Hit Rates for Various Shared and Private Cache Sizes, for
Both FILTER 8 and MATRIXMULT 8 ... 6.21

6.4 Hit Rates and Completion Times for Varying Block Size
in a 64K Cache, for FILTER 8 ... 6.23

6.5 Completion Times of FILTER 8 as Line Sizes Vary 6.24

v

AFIT/GCS/ENG/93D-19

ABSTRACT

The Multiple Channel Architecture (MCA) is a recently proposed

computer architecture which uses fiber optic communications to overcome

many of the problems associated with interconnection networks. There exists

a detailed MCA simulator which faithfully simulates an MCA system,

however, the original version of the simulator did not cache shared data. In

order to improve the performance of the MCA, a cache coherency protocol

was developed and implemented in the simulator. The protocol has two

features which are significant: (1) a time-division multiplexed (TDM)

communication bus is used for coherency traffic, and (2) the shared data is

cached in an independent cache. The modified simulator was then used to

test the protocol. Two applications and six test configurations were used

throughout the testing. Experiment results showed that the protocol

consistently improved system performance. Also, a proof-of-concept

experiment indicated that performance improvements can be attained by

varying cache parameters between the independent shared and private data

caches.

vi

DESIGN OF A SHARED COHERENT CACHE FOR

A MULTIPLE CHANNEL ARCHITECTURE

CHAPTER 1

INTRODUCTION AND OVERVIEW

1.1. Introduction

A computer's cache is an established necessity for attaining high

performance. Large-scale systems presently being designed will need efficient

cache coherency protocols in order to realize their potential processing power.

One proposed architecture for massively parallel processing is the Multiple

Channel Architecture, or MCA. This architecture uses fiber optic technology

in an effort to design an ideal interconnection network. The architecture has

been tested on a simulator to assess its potential performance. Although

much of the MCA has been designed, some elements remain incomplete. For

one, the simulator does not cache shared data.

1.2. Cache Memory

Cache memory helps the computer architect diminish the bottleneck

between the computer's central processing unit (CPU) and its main memory.

CPUs request information from memory at a very high rate-much faster

than main memory can provide the data. A cache is a small, fast memory

embedded into a system such that memory requests are answered very

quickly [Smi82]. Caches are so effective that they have become standard

equipment on most computers today [Prz88].

When a computer program accesses a particular address in memory,

two things are very likely to happen. First, that address is very likely to be

referenced again in the near future. Second, other addresses in the same area

1.1

of memory are also very likely to be referenced. Caches exploit these two

innate characteristics of software, which are called temporal locality and

spatial locality [Smi82]. Because of these two characteristics, a cache can store a

very small subset of main memory, yet still answer a majority of memory

requests. A cache hit occurs when the CPU references data already stored in

the cache; the slower main memory is used only when the data is not

available in the cache (a cache miss). The potential performance gain is

dramatic: if a cache is large enough, a 99% hit rate is frequently attained

[Smi85, Smi87].

1.3. Cache Coherence

When a CPU writes to a cached variable, the new value must

eventually be copied back into main memory. In uniprocessor systems, this is

fairly easy to accomplish. Each block of memory in the cache has an

associated bit (the "dirty bit"), indicating whether or not the block has been

modified. Once the dirty bit has been set, the block must be written back to

main memory before it is replaced (overwritten) in the cache [Goo83].

In a multiprocessor system, however, each processor (CPU) has its own

cache. This complicates the problem, because more than one processor can

cache the same data. Whenever data is shared between caches, steps must be

taken to ensure that independent modifications do not occur. As soon as one

cache modifies a shared variable, other cached copies of that variable become

stale (invalid) until they are updated with the new value. Cached data is said

to be coherent if the result of any memory read reflects the latest value

written to the same memory address [Min92]. This has led to a well-known

1.2

problem in parallel computer architecture, the cache coherency problem

[see Cen78, Pap84, Kat85, Swe86, Che88, Min92]. The solution to this problem

is a cache coherency protocol, that is, a set of rules which governs the caching

process such that all shared data remains coherent.

1.4. Cache Coherence and the MCA

The current MCA uses one of the simplest cache coherency protocois:

shared data is not allowed to be cached. Any reference to a shared variable is

fetched from memory, and caching is only allowed for data which is private,

that is, data which is never used by more than one processor. However, the

MCA simulator has shown that this method is not efficient enough for

implementation. Of the total time spent accessing memory, over 90% of the

time was devoted to shared memory accesses, even though these account for

less than 10% of the total number of memory accesses [Wai92]. Much of the

reason for this imbalance was the high hit rate for private memory accesses

(over 99%). However, the architecture needs to be improved by employing a

more efficient scheme.

1.5. Thesis Goal

The goal of this thesis was to design a cache coherency protocol which

diminishes the excessive time that the MCA spends servicing shared memory

requests. Ideally, the designed protocol should be compatible with the

architecture, that is, it should exploit the unique aspects of the MCA to its

advantage where possible.

1.3

1.6. Thesis Overview

Chapter 2 examines existing shared cache coherency strategies, and

specific coherency protocols. Chapter 3 provides more background

information on the Multiple Channel Architecture (MCA). Chapter 4

proposes a coherency protocol for the MCA, and justifies the design decisions

which are made. Chapter 5 explains how this protocol was implemented on

the MCA simulator, and how the implementation process refined the design.

Chapter 5 also introduces the experiment used to evaluate the protocol.

Chapter 6 then presents the results from all experimentation. Finally,

Chapter 7 briefly summarizes the findings and provides some suggestions for

further research.

1.7. Conclusion

This chapter examined the motivation for caching, and presented a

cursory definition of the cache coherency problem. Currently, computer

architects are working to design and build massively parallel machines,

including the MCA, which could someday connect hundreds of processors

and memory nodes [Wai9l]. Cache coherency is a major ingredient for

successful implementation of systems this large. Some solution to the

coherency problem must be developed for the MCA, in order for the MCA to

be a legitimate architecture proposal. The purpose of this thesis is to propose,

simulate, and evaluate a cache coherency protocol especially suited for the

MCA.

1.4

CHAPTER 2

CACHE COHERENCY PROTOCOLS

2.1. Cache Coherency

Memory is said to be coherent if the value returned on a read is

identical to the value stored during the most recent write to the same address

[Min92]. A coherency protocol is a set of rules used to ensure data remains

coherent in a system. Keeping data coherent in a multicache system is now a

well-known problem; several solutions have been proposed and

implemented. Generally, these solutions fall into three categories: snooping

protocols, directory protocols, and software protocols. For these protocols to

work, the system must have some way of knowing which caches contain a

given word (or block) of data. In a snooping protocol, caches monitor the

transactions between main memory and other caches by "snooping" a

common bus. Directory protocols use a set of pointers (the "directory") to

track which caches contain each block of memory. In a software protocol, the

code is analyzed to determine when shared memory may be safely cached.

Coherency protocols can be simple or complex. A more complex

protocol may yield better performance, but at the cost of requiring more

circuitry or memory.

2.2. Attributes of Cached Data

Several factors determine what happens after a processor makes a

memory request. Two of the more obvious factors are the type of request

(read or write) and whether or not the data resides in a local cache (cache hit

2.1

or cache miss). These two factors define four basic types of transactions: read

hit, read miss, write hit, and write miss.

Each data block involved with a transaction has a number of attributes;

a combination of these attributes can determine the state of the data.

The first attribute is data privacy. If data can only be accessed by one

processor, it is considered private. If it can be accessed by more than one

processor, then it is global. The coherency problem is relevant only to global

data; private data requires no coherency protocol. Sometimes the word

shared is used in place of global. However, the term shared is also used in

conjunction with exclusiveness (the fourth attribute, which is explained

below); therefore, in this chapter, the word global will be used to describe non-

private data.

The second attribute is data validity. If memory or a cache contains the

correct, up-to-date value of the data, then its block is valid. If the block has

been updated elsewhere, then the outdated copy of the data is invalid, or stale.

The third attribute is data cleanliness. If the value of cached data reflects

the value contained in main memory, then the data is clean. If the data in

the cache has been updated, and main memory has invalid data, then the

cached data is considered dirty. Cleanliness differs from validity in that

validity is concerned about the most up-to-date value of a variable, while

cleanliness is concerned only with comparing cached data to the value stored

in main memory at a particular time. Dirty data must eventually be written

back to main memory. The terms modified and unmodified are sometimes

used in place of clean and dirty.

The fourth attribute is exclusiveness. If global data resides in one and

only one cache, then it is considered exclusive. If the data possibly resides in

2.2

more than one cache, then it is considered non-exclusive, or shared. It may

be possible for a shared data block to be the only copy across the caches. For

example, this would occur when a shared block is initially found in two

caches, and then one of the caches replaces that block. The remaining shared

data block remains shared until it is proven to be the only copy found in the

caches of a system.

The fifth attribute is ownership. The owner of a data block is

responsible for ensuring the data remains coherent. Protocols which employ

ownership allow exactly one owner per data block. All data is initially owned

by main memory, but ownership can be transferred to a local cache. Some

protocols only allow the owner to modify a block, so a cache must explicitly

acquire ownership before writing to a block. Data residing in a particular

cache can be classified as owned or unowned by that cache.

Coherency protocols define what actions take place during a memory

transaction, depending upon the states of the data blocks. Whenever a

potentially shared block is modified, a notification takes place. A notification

can either be an update (where all cached copies of the variable are provided

with the latest changes), or an invalidation (where other cached copies of the

block are invalidated).

Because four Boolean attributes have been defined for global data, up to

16 distinct states are possible. However, many of these can be ignored by a

protocol. For example, ownership applies only to valid data (the owner of the

data must have a valid copy). Some protocols have been developed which

use as few as three different states [Arc86].

2.3

2.3. Sweazy and Smith's MOESI Model

Sweazy and Smith [Swe86] have defined a class of coherency protocols

which account for five possible states. The first state is INVALID (I); the four

remaining states apply to valid data. These are: SHARED-CLEAN (S),

EXCLUSIVE-CLEAN (E), SHARED-MODIFIED-OWNED (0), and EXCLUSIVE-

MODIFIED (M). This model is entitled the MOESI model, derived from the

letters used to abbreviate the five states. The attribute of cleanliness is

ignored-all modified data is owned and all unmodified is unowned (owned

by main memory). Blending cleanliness and ownership into one property

does simplify the model by reducing the total number of states. However, it

also adds inherent restrictions. Only the owner can modify a cache block, and,

similarly, ownership must be transferred before a non-owner can modify a

block. Because some coherency protocols have this restriction, this model

may need special adaptation to fit a particular protocol.

The MOESI model is not a particular protocol per se, but a model which

represents a configuration of attributes which can be used to design a protocol.

The following three sections describe actual protocols which have been

implemented or proposed.

2.4. Examples of Existing Snooping Protocols

2.4.1. The Synapse Protocol

The Synapse protocol was one of the first coherency protocols

successfully implemented [KSR92]; it is used in the Synapse N + 1

multiprocessor.

There are three states in Synapse: INVALID, VALID, and DIRTY

[Arc86]. VALID data is clean, unowned, and potentially shared. DIRTY data is

2.4

owned. Therefore, Synapse does not account for the attribute of exclusiveness.

The three states used by the Synapse represent the minimum number of

states required to make a snooping-based protocol work [Kat85].

Synapse requires each tag in main memory to have a "dirty bit," which

indicates whether or not the data block is DIRTY in some cache. The

following paragraphs describe what happens for each possible transaction

[Fra84]:

READ MISS, NO CACHE HAS DIRTY COPY: The block is simply fetched
from main memory. All other caches with valid data retain their VALID
state for this block.

READ MISS, A CACHE HAS DIRTY COPY: The original read request is
aborted, since the dirty bit indicates that the copy in main memory is not
valid. The owning cache then writes back the block to main memory, and
changes its local state to INVALID. The original requester then makes
another request, which this time takes place. The requesting cache receives
the data in the VALID state.

WRITE MISS, NO CACHE HAS A DIRTY COPY: The requesting cache
obtains the block from main memory, while all other caches with this block
change their block status to INVALID. The requesting cache receives the data
in the DIRTY state.

WRITE MISS, A CACHE HAS A DIRTY COPY: The cache with the dirty copy
sends the data to the requesting cache. Main memory does not get updated.
The cache which previously held the data now changes its block status to
INVALID. The requesting cache obtains the block with a status of DIRTY.

READ HIT, IN A DIRTY/VALID CACHE: The data is read, and processing
continue-

WRITE HIT, IN A DIRTY CACHE: The block is updated, and processing
continues.

WRITE HIT, IN A VALID CACHE: This is handled like a write miss, where
no cache has a dirty copy. The block is actually fetched from main memory
again, and the states are updated as described in the write miss with no dirty
copy.

2.5

2.4.2. Comments about the Synapse Protocol

Synapse maintains coherency, but there are some tradeoffs worth

noting. Some questions arise when examining the efficiency of the protocol.

The first is, 'Why read the block from main memory on a write hit, when the

status is valid?" Synapse only transfers ownership during a write miss.

Under this rule, a write hit can occur only in a cache where the block is

already owned (DIRTY). The protocol was designed such that there is only

one way to transfer ownership, at the cost of requiring an additional read on a

WRITE HIT.

Another question is: "Why change the state to INVALID after a read

miss, when the cache had a dirty copy?" The cache which had the dirty block

changes its state to INVALID after the update to main memory [Fra84, Arc86].

But the data in the cache is still valid! A change to the INVALID state is only

necessary when the requesting cache is performing a write, not a read.

However, by always changing the dirty block to INVALID, there is no need for

the relinquishing owner to discern between reads and writes, thus

simplifying the protocol.

2.4.3. The Berkeley Protocol

The Berkeley designers wanted to minimize the number of bus

transactions required to access shared data [Kat85]. To do this, they added an

additional state to the Synapse protocol, the OWNED-EXCLUSIVE state. The

Berkeley states are: INVALID, UNOWNED, OWNED-EXCLUSIVE, and

OWNED-NONEXCLUSIVE. Thus, Berkeley accounts for the attributes of

validity, exclusiveness, and ownership, but it does not account for cleanliness.

The owner alone has the right to update a block. Therefore, it is presumed

that an owned block is a modified block.

2.6

The Berkeley cache is capable of two types of reads and two types of

writes [Kat85]. The two types of reads are Read-Shared and Read-for-

Ownership. Because ownership is required for data writes, the Read-for-

Ownership provides a mechanism for acquiring ownership from main

memory prior to a data write. Read-for-Ownership is also used when

accessing private data, thereby eliminating the need to explicitly acquire

ownership at write time. A Read-Shared is used to cache global data without

acquiring ownership.

The two types of writes are Write-for-Invalidation and Write-without-

Invalidation. When all of the caches (which are snooping) detect a Write-for-

Invalidation, any cache which contains the modified block updates the status

of that block to INVALID. The write to main memory does not take place on

Write-for-Invalidation; main memory is only updated during a Write-

without-Invalidation. Write-without-Invalidation is used for flushing

owned blocks back to main memory upon replacement and ownership

transfers. As the title implies, all caches with valid copies retain their state

during a Write-without-Invalidation.

Before a non-owning cache can modify a block, the cache initiates an

ownership transfer. Ownership transfers take place via the following steps:

(1) The previous owner flushes the block back to main memory, using
a Write-without-Invalidation.

(2) The cache requesting ownership then obtains the block with a Read-
for-Ownership.

The following paragraphs explain how the Berkeley protocol handles
the various transactions, depending upon the state of the data [Kat85]:

SHARED-READ MISS, NO OTHER CACHE HAS OWNED COPY: The block
is fetched from main memory and put in the cache with the state
UNOWNED.

2.7

SHARED-READ MISS, ANOTHER CACHE HAS OWNED COPY: The request
is serviced by the owning cache, which gives the block to the requesting cache
with the state UNOWNED. If the owner's state was OWNED-
NONEXCLUSIVE, no other actions are required. If the owner's state was
OWNED-EXCLUSIVE, then the state in the owning cache is changed to
OWNED-NONEXCLUSIVE.

READ-FOR-OWNERSHIP MISS, NO CACHE HAS A COPY (This action
normally occurs when accessing data known to be private): The block is
fetched from main memory, and put in the cache with the state OWNED-
EXCLUSIVE.

READ-FOR-OWNERSHIP MISS, ANOTHER CACHE HAS UNOWNED
COPY (This action normally occurs as part of a write miss, which causes an
ownership transfer): Main memory gives the block to the requesting cache,
with the state of OWNED-EXCLUSIVE. All caches with an unowned copy
update their status to INVALID.

WRITE MISS, ANOTHER CACHE HAS OWNED COPY: Ownership is
transferred as already described (block is flushed back to memory by previous
owner, followed by a Read-for-Ownership by requesting cache). The end
result: all previously cached copies of the data become INVALID, and the new
owner obtains the data in the OWNED-EXCLUSIVE state.

WRITE MISS, NO OTHER CACHE HAS OWNED COPY: The block is fetched
using a Read-for-Ownership. When fetched, it will have the state of
OWNED-EXCLUSIVE, and the write may transpire with no additional
bookkeeping.

READ HIT, IN A VALID CACHE: The data is read, and processing continues.

WRITE HIT, IN AN OWNING CACHE: If the state is OWNED-EXCLUSIVE,
the block is modified locally, and processing continues (no bus transaction
required). If the state is OWNED-NONEXCLUSIVE, the block is updated with
a Write-for-Invalidation. The state is changed to OWNED-EXCLUSIVE in the
owning cache, and all other caches which held the block update their state to
INVALID.

WRITE HIT, IN A CACHE WITH UNOWNED COPY: Because the writing
cache must obtain ownership, this situation mirrors a write miss. If the block
is owned by another cache, then ownership is transferred. If no cache owns
the block, then the first step of the ownership transfer can be skipped,
and ownership is obtained using a Read-for-Ownership.

2.8

2.4.4. Comments about the Berkeley Protocol

Recall that the Synapse protocol requires three bus transactions when a
modified block is read by another cache. These three transactions are:

(1) A cache requests the block from main memory. This request is
aborted when the dirty bit is found to be set.

(2) The cache with the dirty data writes the block back to main memory.

(3) The first cache re-requests the data. This time the request is granted.

The Berkeley designers specifically wanted to reduce the number of

transactions required in this situation [Kat85j. They accomplished this by

allowing the owner of a block to service a read request, while retaining the

dirty copy of the data. Synapse cannot allow this, because it lacks a state which

indicates that data is both dirty and shared. The OWNED-NONEXCLUSWVE

state provides this information.

An added advantage of this state is that it allows the protocol to

differentiate between shared and exclusive data. Therefore, exclusive data can

be modified without having to notify caches of the update. This keeps the bus

free from meaningless broadcasts.

The protocol may unnecessarily burden the bus during ownership

transfers, however. If one cache can provide dirty data to another, without

writing back to main memory, then why can't that cache also grant

ownership without writing back to main memory? Instead of first writing

the block to memory, and requiring the new owner to perform a Read-for-

Ownership, the initial Write-without-Invalidation could be changed. It could

instead invalidate other copies of the data, while at the same time granting

ownership to the new owner. This would save one bus transaction per

ownership transfer.

2.9

2.4.5 The Dragon and the Firefly

The two protocols previously discussed allow only one writer per block,

namely, the owner. There are, however, coherency schemes which are not

limited by this restriction. Two such schemes are the Firefly protocol (used in

DEC's Firefly multiprocessor) and the Dragon protocol (used in the Xerox

PARC Dragon). These schemes are very interesting in that they do not have

an INVALID state--all cached data remains valid. Whenever a write is

performed, the writing cache sends the modified data to the other caches,

rather than an invalidation signal.

These two protocols require a "SharedLine" on the bus [Arc86].

Whenever a block is accessed, caches which contain the block assert the

SharedLine. Thus, exclusiveness is detected at block access time.

Archibald and Baer [Arc86] report three states for the Firefly:

EXCLUSIVE, SHARED, and DIRTY. Therefore, this protocol only accounts for

two attributes: exclusiveness and cleanliness. By definition, DIRTY data is

exclusive, and SHARED data is clean. When a write to a SHARED block

occurs, the writing cache transmits the modified word over the bus. Main

memory and other caches with the data then update their copies of the word.

This configuration works as follows [Arc86]:

READ MISS, NO CACHE CONTAINS COPY: When no other cache asserts
the SharedLine, the block is fetched from main memory. It is loaded in the
EXCLUSIVE state.

READ MISS, ONE OTHER CACHE CONTAINS EXCLUSIVE COPY: The
SharedLine is asserted, and the block is furnished by the cache with the data.
Both caches now have the block in the SHARED state.

READ MISS, ONE OTHER CACHE CONTAINS DIRTY COPY: The dirty data
is transmitted on the bus, where it is received by both the requesting cache
and main memory (main memory gets updated). The result is that the two
caches now contain the SHARED block.

2.10

READ MISS, OTHER CACHES HAVE THE SHARED BLOCK: The block is
provided to the requesting cache by a cache which already has the data. All
caches retain the SHARED state.

WRITE MISS, NO CACHE CONTAINS COPY: The block is loaded from main
memory in the DIRTY state.

WRITE MISS, OTHER CACHE/S CONTAIN/S EXCLUSIVE/SHARED COPY:
The block is loaded in state SHARED. The writing cache will broadcast the
write, so that both main memory and all other caches with the block will
remain valid.

WRITE MISS, ONE OTHER CACHE CONTAINS DIRTY COPY: The cache
with DIRTY data writes the block onto the bus, updating main memory and
providing the requested data to the other cache. The two caches now contain
the block in the SHARED state; when the second cache modifies the data
(performs its write), the modified word will be put on the bus, so all other
caches (and main memory) will remain valid.

READ HIT: The data is read from the cache, and processing continues.

WRITE HIT, IN A SHARED CACHE: The write is transmitted over the bus,
so all copies of the data remain valid.

WRITE HIT, IN AN EXCLUSIVE OR DIRTY CACHE: If the state was
previously EXCLUSIVE, it is updated to DIRTY. The write takes place and
processing continues with the block in the DIRTY state.

The Dragon has four states: EXCLUSIVE-CLEAN, SHARED-CLEAN,

EXCLUSIVE-DIRTY, and SHARED-DIRTY. Therefore, the states can be

represented with and CLEAN bit and a SHARED bit. The advantage of the

Dragon's extra state (SHARED-DIRTY) is that writes to main memory can be

delayed--when a cache modifies a data block, the modifications are sent only

to the caches which share the data. Only one cache can have a block in the

SHARED-DIRTY state, and that cache is responsible for updating main

memory before the dirty block is replaced.

Dragon accounts for exclusiveness and cleanliness. The attribute of

ownership is accounted for, also, since only one cache can have a block in a

2.11

DIRTY state. That cache is responsible for (1) informing the caches which

share the block of all modifications, (2) eventually updating main memory

(before the block is overwritten), and (3) furnishing the data to caches which

request it after a miss.

The Dragon transfers ownership much more easily than the Berkeley

protocol. If a cache has a write hit, it simply transmits the change over the

bus. The cache which broadcasts the write also updates its block state to

DIRTY (SHARED-DIRTY if the SharedLine is raised). All other caches

perform the update, and retain the state of SHARED-CLEAN. The cache

which made the most recent update will always have the block in the DIRTY

state (that cache becomes the new owner), and all other caches will use the

state SHARED-CLEAN. This is, in fact, a misnomer, since the data is actually

dirty (it does not reflect the stale value in main memory). However, the

scheme works to delay a write to memory for as long as possible.

2.4.6. Comments on the Firefly and the Dragon

Of the six snooping protocols surveyed by Archibald and Baer [Arc86],

the Dragon had the best performance, and the Firefly was a close second. It

appears that DEC modified the Firefly coherency scheme some time after the

[Arc86] evaluation, and has since adopted a scheme more like the Dragon,

based on an article published by Thatcher [Tha88]. The protocol described in

[Tha88] has the same four states as Dragon, and it behaves similarly.

In uniprocessor systems, the primary aim of the cache is to decrease

memory access times for the processor. An effective snooping coherency

protocol must not only try to keep processor access times low, but also

minimize bus traffic. Caching is a very important part of bus saturation

prevention.

2.12

Both Firefly and Dragon do this by transmitting updates to other caches,

rather than invalidation signals. By keeping data valid while it is shared,

there are fewer times a block has to be re-fetched from memory. Dragon

further attempts to lighten the processor load on main memory by deferring

copy-backs for as long as possible [Tha88].

2.5. Overview of Directory Protocols

The coherency protocols previously discussed are all members of the

snooping family, where caches snoop a common bus to maintain block states.

Unfortunately, snooping protocols can saturate the common bus if the

number of processors gets too high (20-30 processors) [Aga88, Fra84]. The

snooping protocols already presented are therefore not suitable for large

parallel systems, because the protocols are not scalable. A system or

subsystem is considered scalable if, as the number of processors increases, the

performance improvement of the system is linear or near-linear [Len92]. All

the protocols described were designed to run on systems with one common

bus, and such an architecture is not considered scalable. In order for a

snooping protocol to be scalable, some improvement would need to be made,

such as a hierarchical bus scheme.

Directory protocols track data states (validity, exclusiveness, cleanliness,

and ownership) by maintaining a set of pointers, rather than by monitoring

broadcasts over a shared bus. The set of pointers which tracks this

information is called the directory. Directory protocols were proposed as early

as 1978 [Cen78], but they have recently gained popularity since they are

considered to be better suited for larger parallel systems [Ste90]. [Cha90]

describes three types of directories: limited, fully-mapped, and chained.

2.13

A limited directory is set up so that only a fixed number of processors

can share the same block. The directory size is N bits per block, where 2N

caches can simultaneously share the same block. The main disadvantage to

limited directory schemes is that a cache may be forced to give up a block if

the number of processors requesting the block exceeds the imposed limit.

Theoretically, limited directories are not scalable if the number of processors

simultaneously accessing global data increases as the number of processors

increases.

A fully-mapped directory is large enough to track its data blocks, even if

a block resided in every processor's cache. The size of a fully-mapped

directory is N bits per block, where is N is the number of nodes interacting

with the memory module (normally, N = number of processors, but this

could vary with a hierarchical cache scheme). Fully-mapped directories can

be quite large--size is one of their chief disadvantages [OKr9O]. Another

potential problem is the changing of directory hardware every time the

number of processors increases.

A chained directory is distributed in the caches themselves, rather than

in a central location. Chained directories are much like a linked list. The

directory in main memory points to one cache with the data. That cache has a

pointer which points to another, and so on. Chained directories do not limit

the number of sharing processors, and the size of the directory is independent

of the number of processors. The main disadvantages are the "ripple delay"

which occurs when traversing the list, and the overhead of list maintenance

(such as when a processor in the middle of the list has a block replacement).

A fourth type of directory protocol is an overflow directory [Ste9O].

Overflow directories are very similar to limited directories, except that when

2.14

the directory overflows, the overflow directory uses a secondary method to

maintain coherency. This secondary notification scheme can vary between

architectures. For example, an overflow bit could be used to indicate that all

caches need to be notified of any change to a particular block. Another

scheme might use a pointer (the start of a chained directory) once all other

directory entries are used.

2.6. The Stanford DASH Directory Protocol

The Stanford DASH architecture is a set of clusters. Each cluster

contains a small number of RISC processors and is allotted a dedicated

portion of main memory. Clusters communicate over an interconnection

network. The DASH coherency directory works among four levels of a

memory hierarchy, described below [Len92]:

Level 0 (Processor level). This level includes the processor and its local
cache.

Level 1 (Local duster level). This level includes all the processor caches
within the cluster.

Level 2 (Home duster level). This is where all main memory and the
cache directory are located. The cache directory has one bit for each
cluster, rather than for each processor, reducing its overall size.

Level 3 (Remote cluster level). This level includes all processor caches

from remote clusters.

The DASH coherency directory is located in main memory. It has three

states for data blocks: UNCACHED, SHARED, and DIRTY. SHARED data is

always clean, and DIRTY data is always exclusive (the DASH protocol

combines cleanliness and exclusiveness, much like the original Firefly

protocol combined these two attributes). Additionally, the local cache

maintains state bits which indicate validity and cleanliness. Thus, validity is

2.15

detected at the local cache. Exclusiveness and cleanliness can be detected

either at the directory or at the local cache.

The DASH protocol interfaces with the duster architecture as follows:

when a reference is made, the local cache is checked (Level 0 check). If there is

a hit, the request is serviced at that level. If there is a miss, or if further action

needs to be taken, the transaction is forwarded to the next level. This process

continues through the levels until the transaction is complete (the process

will always complete at or before Level 3).

During a read and write, the following activities occur at each level

[Len92]:

READ FROM MEMORY,

LEVEL 0: If the local cache has the data, processing continues. Otherwise, a
read miss is propagated to Level 1.

LEVEL 1: If a cache within the local cluster contains the data, this cache
provides the block to the requesting cache. No state change is required in the
directory, since the data block remains within the cluster. If the block is not in
the duster, the request propagates to Level 2.

LEVEL 2: If the block is dean (i.e., UNCACHED or SHARED), then it is
immediately sent to the requester, and the directory is updated to show that
this cluster now has the data. If the directory indicates the block is DIRTY,
then the request is forwarded to Level 3.

LEVEL 3: The cache with the dirty data sends the block to both the
requesting cache and main memory. The two caches will then have SHARED
data, and the directory is updated to reflect this.

WRITE TO MEMORY:

LEVEL 0: If DIRTY data is in the cache, the write proceeds without delay.
Otherwise, the request is propagated to the next level.

2.16

LEVEL 1: If this cluster has the block in the dirty state, the dirty block is
transferred to the requesting cache. The directory and main memory remain
isolated from the transaction. Otherwise, the write is forwarded to Level 2.

LEVEL 2: If the directory indicates the block is SHARED or UNCACHED, the
write request is granted. The state of the writing cluster is set to DIRTY; any
other clusters with the data receive invalidation signals. If the block is DIRTY
in another cluster, the write request is forwarded to that cluster.

LEVEL 3: The dirty data is sent from the remote cluster to the requesting
cluster. An update is sent to the directory, so that it knows the new
possessing cluster. The sending cluster also invalidates its old copy of the
data.

BLOCK REPLACEME

A dirty block is only written back to main memory upon replacement. If the
block belongs to the memory associated with the local cluster, there is no need
to transmit over the interconnection network.

2.7. Comments on the DASH Protocol

The coherency protocol benefits from the cluster architecture. Two

objectives in parallel systems are (1) to minimize latency (i.e., keep the miss

wait time low), and (2) increase the memory bandwidth (i.e., keep main

memory as free as possible). By allowing the local cluster to handle transfers

within the cluster, the DASH accomplishes both objectives. Additionally, on

a miss to a dirty block, the remote cluster responds directly to the requester,

rather than writing through main memory. This also reduces latency and

increases the bandwidth.

Another benefit of clusters is the reduced size of the directory. DASH

has a fully mapped directory without having to use one bit per processor.

Processors can be added to existing clusters without changing the directory

size.

2.17

2.8. Overview of Software Protocols

Software coherency protocols rely upon code analysis to determine

whether or not particular data blocks are cacheable during a given program

epoch. An epoch is defined as either a parallel loop in a program, or a serial

section of code between such loops [Min92]. The simplest software protocol is

one which simply will not allow a shared variable to be cached, thereby

ensuring coherency. Another option is to disallow shared variable caching

only during program epochs when writes occur to that variable or block. This

requires a more complex analysis, but it can lead to improved performance.

In general, performance may be improved as t. .ompile-time analysis grows

more complex.

Without run-time checks, software protocols must take a conservative

approach when determining what is and is not cacheable (an access which

may be stale at run-time is treated as miss, whether or not the data has

actually been modified). This degrades performance, since conditional writes

reduce the hit ratio, even when the writes are not performed during

execution. However, the hit ratio is only one important element of a

coherency scheme. Another important facet is the amount of bus traffic

incurred while maintaining coherency. This becomes critical in massively

parallel systems. Because software protocols do not rely on run-time

commu-,iication, they are potentially more scalable than both snooping

protoco> and directory protocols.

Most software protocols only deal with the attribute of validity. Cache

entries are either valid or invalid. Because of this, many software schemes

use write-through, which keeps the number of states at two.

2.18

One early software protocol was designed so that the entire cache was

invalidated whenever a possible stale access was encountered [Che90].

Invalidating an entire cache seems so drastic that such a protocol would be of

no practical use. However, Cheong and Veidenbaum claim that such a

scheme can achieve "good performance," in spite of its obvious fault [Che88].

[Che90] shows some test results using this protocol, and the performance was

reasonable for four out of the seven simulation applications they tested

("reasonable" in this context is loosely defined as achieving a hit rate of at

least 50% of the ideal hit rate).

More recently proposed software protocols attempt to overcome

previous shortcomings in two areas. First, they use selective invalidation,

that is, they invalidate only a subset of the blocks after a given write. Second,

they attempt to combine some run-time results with the compile-time

analysis to avoid unnecessary invalidations. Two such schemes are those by

Cheong and Veidenbaum [Che88], and Min and Baer [Min92].

2.9. Cheong and Veidenbaum's Fast Selective Invalidation Protocol

During the compile-time analysis, each memory reference is marked as

either a memory-read or a cache-read. Cache-reads are used whenever the

cached variable is guaranteed to be valid, based on the software analysis.

Cache-reads are always serviced by the cache. Memory-reads are serviced by

memory whenever the run-time analysis indicates that the cached variable

has become stale.

Each entry in the cache has a change bit, which determines whether or

not a memory-read to that entry is treated as a hit or as a miss. This bit is set

for every entry in the cache each time an INVALIDATE CACHE instruction is

2.19

executed. INVALIDATE CACHE instructions are inserted by the compiler;

they appear in conjunction with code segments which possibly perform

memory writes, thereby causing extra cached copies to become invalid.

If every entry in the cache gets its change bit set, then where are the

savings over indiscriminate invalidation? There are two scenarios where

performance gains are realized. The first is when a cache-read is used (instead

of a memory-read). In this case, the data is fetched from the cache, regardless

of the change bit. The second scenario occurs when fetching an item from

memory, since the change bit is reset. Thus, additional references which

occur before the next INVALIDATE CACHE are serviced by the cache, even

though the reference is marked as a memory read.

2.10. Comments about Cheong and Veidenbaum's Protocol

Although an improvement over previously proposed software

protocols, Cheong and Veidenbaum's fast selective invalidation protocol still

does not eliminate unnecessary invalidations. It has no provision for

determining whether or not conditional writes actually occur, and thus still

takes the conservative approach for each instance of a conditional write. For

example, consider the following segment:

if condl then
Update (Array.X)

end if;
if cond2 then

Update (Array_.Y)
end if;
Update (ArrayZ)

/* invalidate cache */
Li: Readfrom (ArrayX)

2.20

The invalidate cache is inserted because some modifications occurred in

the previous epoch. Since Array.X may have been written to during that

epoch, then the Read_from statement at Li must be flagged as a memory

read, not a cache read. Therefore, the scheme will always fetch from main

memory at L1, regardless of whether or not condl evaluated to true. If condl

was false, then the data in the cache would still be valid.

Despite this shortcoming, this protocol is one of the better software

protocols, and was chosen as one of the best schemes for comparison purposes

when Min and Baer proposed their clock-and-timestamp protocol [Min92].

2.11. Min and Baer's Clock and Timestamp Protocol

In this scheme, each shared data structure (array or scalar) has a counter,

or clock associated with it. Also, each cache block has an associated

timestamp, its length in bits equals that of the clock. All clocks are initially set

to 0, and each variable's clock is incremented between two program epochs

where the associated data item may have been modified. Whenever a word

is loaded into the cache, the timestamp is updated based upon the value of

that variable's clock at load time. A cached item is considered valid if the

value of the timestamp is greater than or equal to the current value of the

clock. The end result is that a cached variable is considered valid until the

start of a program epoch where the cached value may become stale.

2.12. Comments about the Clock and Timestamp Protocol

Min and Baer claim that this protocol is able to deliver a better hit ratio

than other software protocols. However, it does require more hardware.

2.21

Namely, a timestamp is required for each cache block, thereby increasing the

size of the cache. Min and Baer point out that this additional storage

requirement only grows in relation to cache size; whereas, in a fully mapped

directory, the storage requirement grows in relation to main memory-a

much worse situation. But the timestamp is not free, either. Min and Baer

suggest a 16-bit timestamp associated with each cache block.

The one place where Min and Baer's scheme has an advantage over

other schemes is that it keeps track of which processor modified the data so

that the writing processor will have a cache hit the next time it references that

item. Whenever a processor writes to a shared variable, and then reads it

again before the next epoch, the timestamp protocol will have an additional

hit. The more frequently this occurs in a program, the bigger the performance

gain. The question is: "Does this event happen often enough to justify the

more complex hardware requirements?"

Another good idea introduced in their scheme is selective loading of the

cache. If there is no way that a data item can be used before it becomes

invalid, it is not loaded in the cache. For example, suppose one processor

(processor A) reads a data item X. Suppose also that before processor A

references X again, processor B modifies X. There is no need to load X into

processor A's cache, because X cannot be used, and it might replace data which

would have otherwise caused a cache hit. Any coherence protocol-snooping,

directory, or software-could benefit by such a compile-time analysis.

2.13. Summary

This chapter examined five cached data attributes. Each attribute can be

applied when defining the states used in a coherency protocol.

2.22

The first attribute was data privacy. An example of a privacy protocol is

the software scheme which prohibits the caching of global data.

The second attribute was data validity. The DASH and Berkeley

protocols are examples of invalidating protocols. These protocols send an

invalidation signal to caches with copies of dirty data. The Firefly is not

invalidating; it keeps all data valid by transmitting the updated value, rather

than in invalidation signal.

The third attribute was data cleanliness. A cleaning protocol would be

one which always employed write-through, so that main memory always

remained valid. None of the snooping protocols discussed in this paper are

cleaning protocols; all of them allow dirty data in the caches. Many software

protocols keep cached data clean so that any cache with invalid data can

simply get an updated copy from main memory.

The fourth attribute was exclusiveness. An excluding protocol would

allow only one copy of a global variable to be cached at any given time. Such

a scheme would be inefficient, and none of the schemes discussed in this

paper fit this description.

The fifth attribute was ownership. The Berkeley protocol is a classic

example of an ownership protocol; only the owner of a block is allowed to

modify that block. In contrast, the Firefly does not account for ownership.

The five attributes are normally combined to simplify the protocol. .For

example, exclusiveness and cleanliness are often integrated, as in the DASH

protocol. Combining can vary greatly between protocols: the Dragon protocol

keeps these same two attributes mutually exclusive.

Some combinations will blur the distinctions between the attributes.

When dirty data must be kept exclusive, is the exclusive holder also the

2.23

owner? In this chapter, ownership has only been applied to schemes which

allow more than one dirty copy in the caches.

This chapter also described the three families of protocols and detailed at

least one example of each. Some benefits and disadvantages associated with

the three approaches were discussed.

One area of extreme concern is scalability. Because of bus saturation,

snooping protocols are not considered scalable. Snooping protocols are also

limited because they must monitor a common bus. The Wisconsin

Multicube has actually implemented a snooping protocol despite having

more than one bus [Goo88], but snooping all the network traffic would be

very difficult for an architecture with many channels, such as the MCA.

Directory protocols are better, but fully-mapped directories are generally size-

prohibitive for large systems. Chained directories have no size problem, but

there is a communication overhead associated with maintaining and

traversing the chain. A good software protocol can be scalable, since it

analyzes the software independently of the target hardware platform.

However, since it is difficult to detect whether or not a possible data write will

actually occur, unnecessary invalidations are a problem.

A way to effectively enforce coherency may be to use a memory

hierarchy, and use different types of protocols at each level. The Stanford

DASH does this in their cluster architecture, using a directory at main

memory, and a snooping protocol at the cluster level [Len90]. Additionally,

Min and Baer point out that their software protocol may be more effective in

a multilevel cache system, with a directory protocol at the next level [Min92].

2.24

CHAPTER 3

THE MULTIPLE CHANNEL ARCHITECTURE (MCA)

3.1. The Multiple Channel Architecture

As mentioned in Chapter 1, the chief goal of this thesis is to design a

cache coherency protocol for the Multiple Channel Architecture, or MCA. In

order to fully understand the protocol design decisions, the MCA must be

explained. This section briefly discusses the MCA: why it was designed and

how it works. For more detailed information, see [Wai9l], [Wai92].

The MCA is a proposed computer architecture. It uses an alternative

communication system which overcomes many of the obstacles in massively

parallel systems. Namely, it uses fiber optic communication paths and

tunable lasers in lieu of a conventional interconnection network. Because

different frequencies (channels) can be simultaneously broadcast on the same

fiber optic path, many different messages can be sent over the same "wire" at

one time.

The ideal interconnection network allows any node to communicate

with any other node in one step. However, a fully connected topology is

difficult to realize because the complexity of the network increases

dramatically as nodes are added to the system (see Figure 3.1). To overcome

this problem, various strategies have been proposed and implemented. One

strategy is to configure the nodes in a way that allows communication in a

relatively small number of steps. As an example, the hypercube allows one

node to communicate with any other in no more than log2n steps, where n is

the number of nodes in the network. Another strategy is to implement some

type of switching network. The system is configured so that the nodes can

always communicate in one step, by traversing a network of switches. A chief

3.1

disadvantage is that many times, two messages can not be broadcast

simultaneously, because they would need to be routed through the same

switch (see Figure 3.2).

Because the MCA uses fiber optic communication paths in conjunction

with tunable lasers, communication between any two nodes can be done in

one step.

Each node has at least one laser receiver/transmitter (called an r/t, for

short). For the duration of a particular task, each r/t is tuned to receive on a

fixed channel. The transmitters are tunable, and can be tuned to a given

frequency (channel) in a few nanoseconds [Wai92]. If node A wants to

communicate with node B, then node A first tunes its transmitter to the

channel on which node B receives, and then sends its message (see Figure

3.3). [Wai9l] reported that each channel is likely to reach a 1 Gb/sec

bandwidth. Systems with a 3 Gb/sec bandwidth and as many as 100 distinct

channels have already been successfully tested [Gla93, Kar93]. The MCA

simulator assumes a 2 Gb/sec transmission rate.

As currently planned, the MCA has three types of nodes: memory, I/O,

and processor. Memory nodes and processor nodes have two r/t's. One is a

conventional r/t, and the other is a time-division multiplexed r/t which can

be used for rapid barrier communication. A wide variety of configurations

can be realized by various combinations of channel sharing. Research to date

shows that using one channel per node results in gross underutilization.

Therefore, processor nodes and memory nodes are likely to share the fixed

receive channels.

3.2

C& (3) * (10)

(6) (15)

Figure 3.1: Fully Connected Topologies. Fully connected topologies for
systems with three, four, five, and six nodes. The number of connections
required for each is listed to the right. For a 16-node system, 120 connections
would be required.

SOURCE DESTINATION
NODE NODE

[0] 1 01

[51 [51

Possible switch states are:

straight cross upper lower
through broadcast broadcast

Figure 3.2: Generalized Cube Network. A generalized cube network with
eight nodes. Node 0 can transmit to Node 1 while Node 6 transmits to Node
7. However, Node 4 cannot transmit to Node 2 while Node 0 transmits to
Node 1, because there is a conflict at the top left-hand switch.

3.3

PROCESSOR MEMORY
NODES NODES

t 0t0 0-- --o

S5 r

t 4t

2 2

r 3r

t t
3 3

Figure 3.3: MCA Communication Example. An MCA configuration with
four processors and four memory nodes. The processors are tuned to
channels 0 through 3; the memory nodes are tuned to channels 4 through 7.
To communicate with a particular node, the sending unit tunes its
transmitter to that node's receiving channel, then transmits. In this example,
Processor 1 is transmitting to Memory 0, Processor 2 is transmitting to
Memory 3, and Memory 0 is transmitting to Processor 0. These transmissions
can all occur simultaneously.

3.4

3.2. The MCA Simulator

In order to evaluate the performance of the proposed architecture, a

simulator has been built [Wai92]. This is a program written in the PCP

computer language, a parallel version of C. The program attempts to

faithfully simulate the MCA, under a variety of configurations, running a

suite of parallel programs. The test suite currently includes four programs.

MATRIXMULT multiplies two square matrices whose size is determined as a

parameter at run-time. FILTER performs 64x64 median filtering. GAUSS

performs gaussian elimination on a square matrix whose dimension is given

as a parameter at run-time. WATER performs a simulation of water

molecule movement (the number of molecules simulated is a run-time

parameter). A modified version of this simulator is the foundation for the

experiment of this thesis. These modifications and the experiment are

discussed in Chapter 5.

At run-time, MCA configuration information is passed to the

simulator. This information includes:

The number of processor nodes (CPUs).
The number of shared memory nodes.
The number of private memory nodes.
The number of channels to be used by the processors.
The number of channels to be used by shared memory nodes.
The number of channels to be used by private memory nodes.
The overlapping of channels (one channel can be shared by multiple

processors, shared memory nodes, and/or private memory
nodes).

The number of tasks to be run during the simulation (each task has its
own configuration of processors, memory nodes, and channels,
although channels can be shared between tasks).

The size of the private cache (defaults to 64K).
Other cache parameters (defaults to a 4-way set associative private cache

with a line size of 32 bytes).

3.5

The simulator is event driven, not trace driven. The memory

controllers, busses (channels), cache controllers, I/O ports, and processors all

have associated finite state machines which ensure that the simulation

remains true.

As an example, suppose CPU 0 needs to fetch an instruction. First, the

cache controller for processor 0 must be free. If it is, it checks to see if the

address of the instruction is contained in a valid block in the cache. If the line

is not cached, then the CPU must form a request packet. This packet contains

the information required by the IEEE 802.3 (Ethernet) Standard, including a

preamble, start, destination, source, length, type, data field, and cyclic

redundancy check (CRC). A built-in delay is associated with the packet

formation; the delay time varies according to the length of the packet. After

the delay, the status of the bus is checked. If it is busy, the packet must wait

until the bus is free. Once the bus is free, an attempt is made to transmit. If

there is a collision with another packet, the collision is resolved using a

CSMA/CD protocol with a binary exponential truncation limit of 10. Once

the packet is on the bus, the bus remains busy for a set time, based on the

propagation delay and modulation rate for a five-meter cable length. When

the packet arrives, it is put into the memory controller's receive buffer. It will

be serviced from there once the controller is free. There is an associated delay

with this servicing. After the reply packet has been formed, it must be put

onto the bus in the same manner as it was at the processor node. The

transmit time is dependent upon the length of the packet. After the processor

receives the packet, the line can be put in the cache only when the cache

controller is free. The CPU sends an acknowledgement packet back to

memory for every packet it receives; these packets also have delay times and

must go through the same bus arbitration. After the line is loaded in the

3.6

cache, the CPU can fetch the instruction. If the instruction requires data

which is not is the cache, a cache line must be retrieved from memory again.

CPUs stall whenever (a) an instruction miss occurs, and (b) whenever a

second miss to the same address occurs. Condition (b) prevents out-of-order

execution of the same variables. Out-of-order execution does occur when the

same variables are not involved. The stall conditions are intentionally very

conservative.

The simulator was designed to maximize faithfulness to an actual MCA,

in terms of delays and network traffic. If cache ejections of private data are

required, an LRU (least recently used) scheme is used, with a write-back

packet required whenever the ejected line is dirty. This write-back packet will

prompt an acknowledgement packet from memory after it is received.

The simulator also keeps track of many performance statistics. Totals

are kept of the number packets requested and sent by each node, the number

of collisions on each bus, the bus utilization, the CPU utilization, the cache

hit rates, the number of cache ejections, and literally dozens of other items.

Additionally, periodic histograms of most of these statistics are available so

that performance trends of this data can be identified and analyzed. For

example, a low cache hit rate during the first 50,000 clocks would be expected,

since the cache is "cold" during program initialization. Similarly, more

collisions would be expected during this period, particularly if memory nodes

are sharing channels, since many more requests are being made to the

memory nodes.

3.3. Summary

This chapter discussed the MCA architecture and the MCA simulator.

Knowledge of the architecture is important in order to understand the design

3.7

decisions described in the next chapter. A modified version of the MCA

simulator incorporates the protocol described in Chapter 4, and this version

was used to test the protocol and measure its performance. This experiment

is described in Chapter 5.

3.8

CHAPTER 4

PROPOSED COHERENCY PROTOCOL FOR THE MCA

4.1. Selecting a Coherency Protocol for the MCA

The goal of the MCA cache coherency protocol is to balance necessary

tradeoffs such that the overall design has several desirable characteristics.

The ideal protocol is scalable, and it has a high hit ratio for various

multiprocessing applications. Notifications (invalidations or updates) are

completed as quickly as possible. The ideal protocol requires minimal

communication between nodes and minimal hardware overhead. A "smart"

protocol would not cache variables which will not be referenced again and

never fetch from memory when a valid value is already stored in the cache.

4.1.1. Applying Snooping Protocol Principles to the MCA

Snooping protocols, as described previously, are not suitable for

ensuring MCA coherence. There are too many channels in the MCA

architecture for snooping to work. However, the snooping principle can be

used as part of the overall coherency scheme. For example, only one

transmission is required to notify several processors tuned to the same

channel. Whenever multiple processors are tuned to the same channel, they

are, in effect, all snooping a common bus.

4.1.2. Applying Directory Protocol Principles to the MCA

Directory protocols are potentially more scalable [Gup92], and are a

strong candidate for the MCA coherency strategy. The MCA may be

particularly suited for a directory protocol, since a directory could be

maintained based on channel, rather than processor. In this scenario, a fully-

4.1

mapped directory would only require one bit per channel, rather than one bit

per processor. Processors tuned to the same channel would snoop together.

4.1.3. Applying Software Protocol Principles to the MCA

Software analysis can be used to make any protocol more efficient. The

following paragraphs mention some generic ways that compile-time analysis

can improve any hardware protocol's performance, including a protocol for

the MCA.

First, compile-time analysis could prevent caching of a variable that is

not read by a processor before the next modification. In this situation, the

compiler could designate this reference as a memory-only reference. This

prevents possible replacement of a valid block in the cache with a block that

will be invalidated before a cache hit ever occurs. In this situation, the

memory node could send one word rather than an entire block, thereby

reducing communication traffic. The one area where this needs to be studied

further is when other entries in the cache block would be referenced before

the invalidation occurs (for block sizes greater than 1). In such circumstances,

the memory-only references may actually degrade performance.

A second means to improve a protocol is exploit write-runs [Egg88]. A

write-run is the number of times that the same processor writes to a variable

before another processor accesses that variable (see Table 4.1). In such cases,

there is no need to commence the notification process until after the last

write of the run, potentially reducing message traffic. Eggers and Katz [Egg88]

report that the most write-runs are of length 1 or 2; however, some write runs

were so long that the average length was over 5 for two of the four

applications they traced. If a compiler marked a write-run of length 20, it

would save 19 unnecessary notification broadcasts-a significant savings. Two

4.2

WRITE_TO (VARIABLEX) by PROCESSOR A
Processor A alone
accesses Variable_X

WRITE_TO (VARIABLEX) by PROCESSOR A during this code
segment.

WRITETO (VARIABLE_X) by PROCESSOR A

READ FROM (VARIABLEX) by PROCESSOR B This access by
Processor B ends the
write-run.

Table 4.1: An Example Write-run of Length 3.

of the four applications analyzed in [Egg88] had over 6% of their write-runs of

length 20 or more.

Third, some shared variables are modified one time only, at the

beginning of the program. After this one write occurs, the data is no different

from private data, and will never be invalid from that point onward.

Depending upon how a coherency scheme is developed, this information

might also make a protocol more efficient.

4.2. Two Caches per Processor-Separating Private and Shared Data

Using two caches per processor on a parallel machine has many

potential advantages over a unicache system which caches both global and

private data. These benefits are detailed in the following sections.

4.2.1. Eliminating Coherency Hardware Associated with Private Data

Unfortunately, in a unicache mode, the overhead required by a

particular protocol is applied to all cached data, even though this overhead

4.3

may be meaningless for private data. For example, consider a snooping

protocol with four states for cached data. Each cache block requires two bits to

track the state. If 70% of the data in the cache is private, than these two bits

are only relevant for 30% of the cache (since the private data remains valid).

The chip area used for the two bits, as well as the logic used to verify validity

at reference time, is, in a sense, wasted.

If a processor had two caches, one dedicated to private data and the other

dedicated to global data, then this waste could be eliminated. The private

cache would contain no state bits or validity verification logic-only the global

cache would.

What percentage of the cache is used for shared data? Gupta and Weber

analyzed five parallel programs, and found a large variation in the percentage

of references to global data (vs. private data) [Gup92]. Eggers and Katz [Egg88]

used trace statistics, and also found a wide range of values (see Table 4.2).

However, these values only reflect the percentage of references, so they do not

indicate volume. If shared variables are referenced more frequently on a per

variable basis, then the percentage of shared data in the cache would actually

be less.

Assuming that the shared and global data are referenced evenly on a per

variable basis, we can use the mean value of 43% in Table 4.2. Assuming only

50% of cache references are for data (the remaining 50% for code, see [Smi82]),

then we can generalize: (.43) x (.50) = 22% of all cache entries in a unicache

system contain shared data. Of course, due to the wide range of results in

Table 4.2 and the broad assumptions made, we must understand that 22% is at

best a typical figure, with a fairly large fluctuation possible. Nevertheless, it

seems safe to say that, at any one time, less than half of a cache is likely to

4.4

Shad Refrences rivate n Source

Maxflow 57% 43% [Gup92]
MP3D 76% 24% [Gup92]
Water 17% 83% [Gup92]
PTHOR 48% 52% [Gup921
LocusRoute 53% 47% [Gup92]
PLOVER 39% 61% [Egg88]
PSPICE 24% 76% [EggF8]
PUPPY 31% 69% [Egg08l
TOPOPT 42% 58% [Egg88]

(Mean) 43% 57%

Table 4.2: Percentages of References to Shared vs Private Data. Percentages
are of references to data, and do not include code references.

contain shared data, even though the coherency hardware overhead is

present for every entry.

4.2.2. Customizing Cache Parameters for Two Different Types of Data

How does system performance vary as cache parameters are changed?

This issue has been studied several times [Smi82, Smi85, Arc86, Smi87, Prz88,

Hil89, Prz90]. Parameters of interest include line (block) size, overall cache

size, set associativity, and replacement policies. In parallel systems, the

shared data and private data are cached the same, so optimal parameter

values may in fact be a compromise. The biggest issue is whether or not

shared data and private data have the same characteristics. For example, is

spatial locality equally true for private and shared data? If spatial locality

applies less to shared data, then it would make sense to use a smaller block

size for shared data. A block size such as 32 is very effective for private data,

but it may be too big for shared data.

4.5

By separating shared data into a separate cache, its characteristics can be

studied, ultimately leading to set of optimum parameters. If the best shared

data parameters exactly match the optimum parameters for private data, then

varying these parameters between separate caches would probably yield little

performance benefit. But if ideal parameters varied, cache customization

could improve system performance. There is no reason that the shared cache

could not have a different block size or replacement policy, and there is no

reason that a shared cache could not be designed smaller or bigger than the

private cache.

4.2.3. Copy-back vs. Write-through

In systems which have no global data, a copy-back scheme will perform

better than write-through, since multiple writes to a cached variable do not

need to be forwarded to memory until the block is replaced. The decision to

copy-back or write-through in a multicache system, however, is more

complicated. Whenever a global variable is modified, the writing cache needs

to notify the system, unless the affected block is exclusive and main memory

is allowed to remain invalid. But even if the cache can postpone notification,

it will need to get involved the next time the modified block is requested by

another cache. Because of this complexity, a write-through scheme has some

appealing features in a parallel environment, such as the ability for main

memory to always answer a cache miss. By separating the private and global

caches, a copy-back scheme can be used for private data, while a write-through

scheme can be used in the global cache.

4.6

4.2.4. Reducing Side Effects of Shared Data Updates

When shared data is modified, actions are taken to ensure coherency.

Some protocols use block invalidation, such that each invalidation affects an

entire block. Such protocols could benefit from a shared cache with a smaller

block size, since smaller blocks would theoretically (1) decrease data sharing,

thus reducing invalidations, and (2) decrease the amount of data invalidated

with each invalidation. Additionally, invalidations and updates add

undesirable processing overhead to the cache. For example, a cache may have

to delay a code fetch while a coherency update is being processed. By

separating private data, this added burden does not affect the caching and

fetching of instructions and private data.

4.3. A Proposed Directory-Based Shared Cache

The proposed shared cache coherency protocol for the MCA has two

caches per processor. One cache contains only global data; private data has its

own, separate cache. Every memory reference is either global or private. So a

memory reference causes a lookup in one of the two caches, depending upon

which type of data it is. The private caches require no coherency protocol:

line size, overall size, replacement policy, and organization can be set up any

way which optimizes performance.

The shared cache maintains coherency by using an overflow directory.

Chapter 2 mentioned that fully-mapped directories are size-prohibitive, and

that limited directories may perform badly because any time the number of

processor dusters needing a block exceeds the hard limit, a conflict occurs.

Either the requesting processor is denied permission to cache the variable, or

4.7

else another processor cluster must "give up" the block. Neither option is

very appealing.

In an overflow directory, an overflow bit is associated with each block,

in addition to the directory assigned to each block. The directory has a length

of n, where n is the number of channels which can be stored in one directory

entry. If processors tuned to n or fewer channels have cached a given block,

then the directory alone maintains enough information to enforce coherency.

When processor (n + 1) requests access to the block, the overflow bit is set.

This indicates that some secondary notification scheme must be used.

As mentioned in Chapter 2, the secondary notification scheme can vary

between architectures. In lieu of an overflow bit, a pointer could point to the

beginning of a chained directory.

4.4. The MCA Overflow Directory Coherency Protocol

The MCA overflow directory is channel-based, rather than processor-

based. These directories (one directory per global cache block) reside in the

memory nodes. When a processor modifies a shared block, the processor

alerts the owning memory node of the change. If the overflow bit is not set,

the memory node sequentially transmits the new information across each

channel listed in the directory. Thus, updates are used when the directory is

not overflowing.

If the overflow bit is set, then a global notification takes place. During a

global notification, every cache is notified that a particular block has been

modified. On the MCA, global notifications will be performed via an

Extended Invalidation Broadcast, or EIB. During an Erg, every processor is

provided with the address of the modified block, and those processors which

4.8

have a cached a copy of the block must invalidate it. This can be done rather

simply by using the barrier channel mentioned in Section 3.1 as an "EIB

channel." Recall that an extra, time-division multiplexed r/t exists at each

node. At every processor, these r/t's are all tuned to the same channel.

When a memory node sends a message over the EIB channel, all of the

processors will receive it. In essence, the overflow bit forces the MCA to

revert to a snooping scheme for ensuring coherency. However, the primary

disadvantage of snooping schemes (bus saturation) is overcome because the

EIB channel is used exclusively for invalidation messages. These messages,

therefore, do not interfere whatsoever with regular network traffic.

It is possible that the EIB channel itself will saturate. To prevent this,

independent tasks running on the MCA could be assigned different EIB

channels. Because of the large bandwidth available, it is possible to assign a

unique EIB channel per task, greatly reducing the risk of bus saturation.

However, as the number of processors per task grows, presumably, the

number of EIBs might also grow. However, if n (the directory size) is chosen

carefully, an EIB should not happen very often. Gupta and Weber studied

invalidation patterns for five applications [Gup92]. Using a 32-processor

configuration, they found:

(a) For all five applications, less than 30% of the invalidations in the
system affected more than one processor.

(b) For two of the applications, less than 5% of the invalidations
affected more than one processor.

(c) Of the five applications, the highest percentage of invalidations
affecting more than two processors was 19%.

(d) For four of the five applications, the percentage of invalidations
affecting more than two processors never exceeded 8%.

4.9

(e) Of thk. five applications, the largest average number of processors
affected by an invalidation was 1.6.

Consider a multiple channel architecture configured such that its processors

are tuned to 64 channels, with a directory length of 4. In this scenario, when

processors tuned to 5 distinct channels frequently cache a particular data item,

the entire system gets frequent invalidation messages (via EIBs), even though

a majority of the system (in this example, 59 channels) do not care about the

modification. However, Gupta and Weber's results indicate that an overflow

directory with a directory length of three or four will result in comparatively

few global notifications (see Table 4.3). LocusRoute (a VLSI routing program)

is the only application of the five they studied where such a scenario might

occur relatively frequently. The global notification idea would actually work

quite well for PTHOR, where most invalidations affecting more than three

processors actually require global, or near-global notification.

Number of Processors Affected By Invalidation
Program r 2or3 4-7 - 16-24 25-30 M

Maxflow 85.3% 10.0% 3.0% 0.8% 0.0% 0.0% 0.1%
MP3D 98.0% 1.2% 0.3% 0.2% 0.0% 0.0% 0.0%
Water 99.0% 0.0% 0.0% 0.1% 1.0% 0.0% 0.0%
PTHOR 89.0% 6.0% 0.8% 0.6% 0.1% 0.7% 2.0%
LocusRoute 70.0% 18.0% 11.0% 1.2% 0.0% 0.0% 0.0%

(Mean) 88.3% 7.0% 3.0% 0.6% 0.2% 0.1% 0.4%

Table 4.3: Processors Affected By Invalidation Write. Percentages show the
percentage of invalidations which affect the said number of processors.
Number of Processors Affected By Invalidation. Data shown is for 32-
processor configuration. Gupta and Weber only rounded results less than 1%
to the nearest tenth; results over 1% were rounded to nearest whole per cent.
Hence, some totals do not add to 100%.

4.10

Because the MCA directory is channel-based, the invalidation patterns

found by Gupta and Weber actually represent a worst-case. Since more than

one processor may be tuned to the same channel, an invalidation which

affects three processors in Gupta and Weber's analysis may actually only affect

one or two channels in an MCA configuration. This means that the MCA has

three advantages over conventional architectures when implementing an

overflow protocol. The first advantage is less global notifications. A channel-

based directory will fill more slowly than a processor-based directory, since

any number of processors tuned to the same channel all require one and only

one directory entry. A directory which fills more slowly will not overflow as

often, thereby avoiding a more costly secondary notification scheme. Second,

an MCA will generate less network traffic when the directory is not full.

Whenever two processors tuned to the same channel have cached the same

item, only one message is needed to notify them both of the change. Since

the MCA can be configured so that processors working on the same part of a

problem can be tuned to the same channel, such a savings could be realized

quite often. Third, because the MCA exploits the advantages of fiber optic

communications, the EIB channel uses the same "wire" as the other network

traffic, without colliding with the existing network packets. This means that

the MCA inherently provides a very efficient and timely method of secondary

notifications.

4.5. Other Design Decisions for the MCA Overflow Protocol

Once the overflow scheme had been chosen, two design issues needed

to be addressed. First, should notifications involve updates, invalidations, or

a combination of both? Second, how should the directory be maintained?

4.11

These two questions are related. If invalidations are used, then the directory

is self-maintained. Whenever a cache block is invalidated, that entry can be

deleted from the directory. However, if updates are always used, then how do

you prevent the directory from filling up with pointers to processors which

no longer have the block?

Gupta and Weber's research [Gup92] was again used to answer these

questions. One reason that such a dominant percentage of invalidations

affected only one processor is because so much of the shared data in parallel

programs is migratory. Migratory data is data which is typically passed from

one processor to another, traversing the system, or a portion of the system.

Therefore, the MCA protocol works as follows: If there are any open

directory slots, there is no imminent danger of filling the directory and

forcing a global notification. Therefore, when the directory is not

overflowing, updates can be sent across the channels which are in the

directory, so that each processor caching the data block can receive the current

value. Thus, the cached data remains valid. When the directory is

overflowing, then a global notification occurs. Every channel will receive a

message invalidating the data, via the Extended Invalidation Broadcast.

However, the one processor which performed the write will ignore the

message (allowing it to retain its valid copy), and the directory will retain that

channel number in the directory. The remainder of the directory is cleared.

Two other options were considered. First, invalidations could be used,

rather than updates, when the directory is not full. In this scenario, the

directory is cleared of all channels except the one used by the writing

processor. All other caches invalidate the block. A possible disadvantage of

this scheme is that a cache may have to re-fetch a block, whereas updates keep

4.12

the block valid. The second option calls for the processor, when

acknowledging receipt of the update packet, to inform the memory unit of

whether or not that block was found in the cache. Therefore, if the block has

been ejected, then that entry can be cleared from the directory. While this

might work for some architectures using an overflow directory protocol, it

was regarded as too complicated for the MCA since memory would need to

make sure every processor tuned to a particular channel no longer has the

block.

4.6. Storage Requirements

Let n denote the directory length (the number of entries in the limited

directory), and N denote the number of channels used by the processors on a

system. Every data block in memory that could potenti, iy be shared requires

an associated directory with enough bits to store n channels, plus one

overflow bit. n extra bits will be required indicating whether or not each

channel in the directory is indeed valid. There is also one extra bit required

for signaling an update-in-progress; the justification for this bit is presented in

Section 5.7. So, if N channels are used by the processors, and n is the length of

the directory, then the total storage requirement is:

(no. of directories) * (n * (no. of bits/channel + 2)) bits,

or,
(MEMORY SIZE words / SHARED BLOCK SIZE words) * n *
(log2N + 2) bits.

Chapter 5 describes the possible states of the shared cache. Because there

are four states, two status bits are needed per shared cache block. In the

4.13

simulator, three boolean variables are used, but the primary motivation for

this configuration was software readability.

4.7. Logic

When a processor wants to modify a valid block in its cache (i.e., has a

WRITE HIT), it updates the cache block, and sends the new value to main

memory. When memory receives the packet, the following actions transpire,

depending upon the status of the directory:

THE OVERFLOW BIT IS NOT SET: The new value of the modified word is
sent over each valid channel in the directory. If a snooping cache on that
channel has the block, the new value is written into the cache.

THE OVERFLOW BIT IS SET: An EIB occurs. All processors receive the
address of the block to be invalidated. The processors which have cached the
block invalidate that block. The one exception is the processor which
performed the write-its block is valid, and the state of this block enables the
processor to retain its valid copy. Only the channel of the processor which
sent the updated block (the processor which retains its valid block) remains in
the directory.

On a WRITE MISS, the new value is sent to memory. If the channel of

the writing processor is already listed in the directory, then updates are used

to keep the data coherent. If the channel is not already in the directory, then

it is added (if there is room), and update messages are sent to all channels

except the new one. If there is no room to add the new channel, then an EIB

is performed. Figures 4.1 (a)-(c), shown at the end of this chapter, depict this

behavior.

4.7. Summary

This chapter introduced an overflow directory scheme for cache

coherency. It was also shown that this protocol and the MCA are very

4.14

compatible, since the channel-based directory will help eliminate some of the

undesirable characteristics of an overflow directory.

Although there are many different ways an overflow directory could be

implemented, some design choices were made which will be analyzed using

the MCA simulator. In particular, the MCA protocol will be tested with

varying directory lengths. Based on [Gup92], the expected optimum directory

size is (n = 3) or (n = 4).

When a cached variable is modified, the updated block is transmitted to

main memory. Main memory must acknowledge the update, in case

multiple processors try to update at the same time. A second processor

requesting an update is told to wait if the previous update has not completed.

If the directory for a modified block has not overflowed, updates will be

sent to the caches with that block. The memory node owning the block will

transmit the new value across each channel in the directory, including the

channel from which the update originated (in case multiple processors on

that channel have that variable cached).

If the overflow bit is set, then an Extended Invalidation Broadcast (EIB)

occurs. Invalidation messages are sent to every processor assigned to this task

over the EIB channel. However, the writing cache retains its valid copy,

thanks to a special state which allows it to ignore this particular invalidation

message. EIBs are projected to occur infrequently.

Is this coherency scheme scalable? The storage requirements do not

increase as processors are added to the system. Because of the invalidation

behavior of many parallel programs [Gup92], the directory size can remain

small. The overflow bit allows all of the processors to cache the same

variable, so that some of the performance problems associated with limited

4.15

directories can be overcome. The EIB channel provides a secondary

notification scheme which is not too cumbersome.

4.16

Directory (n=-3) OV OV

31il711XI0101hr 31Il71il61Il0
mem mem
block (OV = overflow bit) block

BEFORE AFTER

Figure 4.1 (a). A processor on channel 6 has a WRITE MISS. Updates are sent

over channels 3 and 7; channel 6 is added to the directory.

Directory (n=3) OV OV

shared I 7 I I shared 1010

mem mem
block (OV = overflow bit) block

BEFORE AFTER

Figure 4.1 (b). A processor on another channel (let's say channel 5) has had a
READ MISS, which caused the directory to overflow (BEFORE configuration).
When this processor has a subsequent WRITE HiT, an E1B is performed.
Whenever an EIB is performed, the resulting directory is cleared of all entries
except one. It contains the channel of the processor which wrote to the block
(in this example, channel 5).

Directory (n=3) OV OV

shared 5i1141 310 shared 5141311 (i)

mem mem 2_111X__0_X1_1___ ii
block (OV = overflow bit) block

BEFORE AFTER

Figure 4.1 (c). When a processor which is not in the directory has a WRITE
MISS, and the directory is full but not overflowing, there are two options.
Assume the writing processor is tuned to channel 2. The first option is to
send updates to all the channels in the directory, and then overflow (option
(i)). The alternative is to perform an EIB and clear the directory (option (ii)).
The MCA simulator implements option (ii).

Figure 4.1: Directory Maintenance for the MCA Protocol.

4.17

CHAPTER 5

SETTING UP THE EXPERIMENT

5.1. Implementing Cache Coherency on the MCA Simulator

A brief description of the MCA simulator was given in Chapter 3.

Chapter 4 described the proposed coherency protocol for the MCA. This

chapter describes how the MCA simulator was adapted in order to test the

proposed coherency protocol and the goals of the experiment.

5.2. The Cache Data Structure

The existing simulator defined a data structure to be used as the private

cache for each CPU. This data structure includes enough space for tag bits,

status bits, and the cached data. Because the proposed protocol separates

shared (global) and private cached data, a similar data structure, the shared

cache, was defined for each CPU. One of the advantages for separating shared

data into its own cache is that the supporting hardware can be customized for

each environment. In the MCA, private data uses a write-back scheme, that

is, modified data is written back to memory only when a dirty block is ejected.

Therefore, a dirty bit is associated with each block in the cache. However, the

shared cache uses write-through, so this dirty bit is not needed.

The private cache uses two state bits: one bit determines validity (all

blocks are invalid at start-up time); the other bit keeps track of cleanliness

(dirty blocks are written back to memory at ejection time and at task

completion). The shared cache uses three state variables: one is a validity bit

(again, all blocks are invalid at start-up time); one bit is for nonreadable

reservations, explained in the Section 5.4; the third bit is used to signify a

5.1

load-wait, which is also explained in Section 5.4. As noted in the previous

chapter, only two bits are required in hardware, since there are only four

possible cache block states. However, three variables were used in the

simulator for the sake of clarity.

5.3. Implementing the Extended Invalidation Broadcast (EIB)

EIBs are performed on the barrier channel, and are designed to inform

all the processors assigned to a particular task of a cache block invalidation. In

a global broadcast, the invalidation message is sent to a large number of nodes

(possibly 64 or more), so it is imperative for the entire EIB to transpire quickly.

Otherwise, global broadcasts will cripple the system, and the coherency

protocol will not be scalable. Sending the invalidation is not the problem,

because only one transmission is required. However, for the system to be

reliable, each processor must acknowledge that they received the EIB message.

The question is: 'How can 64 (or more) processors quickly acknowledge the

receipt of this critical information?"

To solve this problem, the barrier channel is unlike the other channels

on the system in that it is a time-division multiplexed (TDM) optical channel.

Each frame on this channel is divided into slices: one slice per processor, and

one slice for the node which initiates the event (see Figure 5.1). The initiator,

a shared memory node sends the address of the block to be invalidated, and

the processors all respond during their designated time slice. To date, the

barrier channel is used exclusively for EIBs; however, future versions of the

MCA may also exploit this capability as a faster way to pass over program

barriers.

5.2

P 4 CPU Clocks

Initiator(, Block

Figure 5.1: TDM Time Slice Mapping. In an MCA configuration with p
processors, one time slice is dedicated to each processor. Since each processor

is only required to transmit one byte, the time slice allotted for a processor is
smaller than the time allocated for the initiator, which must be able to
transmit the address of the block. The length of the frame in CPU clocks was
calculated based on the following assumptions:

2 GBit/sec channel
50 MFz CPU clock (20 ns / CPU cycle)
1 byte reply per processor
PLAs at receiving end with 10 nsec logic delay
15 byte initiator message ee (below)

I0 I 1 I2 I 3 I4 I5 I 6 I 7 I 8 I 9 I 10 I111112 I13 I14
SYNC. LENG. TY ADDRESS CRC

]Nm~ATOR BLOCK: 15 bytes long. Each byte can be transmitted in 4
nsec, Therefore, this block takes 60 nsec, or three CPU clocks. Adding a 10
nsec logic delay increases the initiator block length to four CPU clocks.

KEY: SYNC = Synchronization Field
LENG = Packet Length

TY = Packet Type
CRC = Cyclic Redundancy Check

5.3

There is more than one way to actually implement an optical TDM

channel. Detailed discussion of possible implementations is beyond the scope

of this thesis. However, [For93] describes one very appealing possibility. The

design in [For93] allows multiple registers to be strobed into a buffer which is

controlled by an optical dock. If adapted for the MCA, each processor's barrier

r/t would be controlled in this fashion. Memory would initiate the event by

tuning to the EIB channel and transmitting the block address at the start of

the frame. Each processor would then transmit on this channel, their timing

being controlled by the strobe and the optical clock.

The three basic states of the barrier channel are IDLE, ACTIVE, and

CLEAR. IDLE means that nothing is transpiring on the channel. Once an

event has commenced, the channel transitions to the ACTIVE state and

remains in the ACTIVE state until all processors have acknowledged the

event. Once all processors have acknowledged the event, the channel enters

into the CLEAR state, and remains in the CLEAR state until all processors

have acknowledged that they have cleared. Thus, this channel can be

represented by a central data structure which has a state, and an array of bits,

one per processor. When the state is IDLE, all bits are at zero (0). When the

state is ACTIVE, the bits are set to one as each processor acknowledges receipt

of the information. When all bits are set to one (1), the state transitions to

CLEAR at the beginning of the next frame, at which time each processor can

reset its bit to zero. If for some reason a processor is unable to do this, then

the channel remains in the CLEAR state for the duration of the frame. The

channel returns to the IDLE state only at the end of the frame when all bits

have been set to zero. Because each CPU only needs to send a single byte

5.4

during its frame segment, the frame time remains a relatively small number

of CPU clocks. The frame cycle time is also calculated in Figure 5.1. The

assumptions used to calculate this figure are actually very conservative, and

represent transfer rates obtainable in 1988 with readily available components

(see [Han881, [Tuc87]).

For EIBs, the initiating node is always a shared memory node which has

just received an updated line from a shared cache, with the overflow bit set,

making an update impossible. Since only one EIB may transpire at a time, the

memory node must first wait until the EIB state is IDLE. Once it is idle, the

state is changed to ACTIVE at the beginning of the next frame. The time slice

allocated for the initiator is long enough for the initiator to broadcast the

address of the updated line (in addition to the standard preamble necessary),

and long enough for this information to traverse the network. Thus, in the

best case, the processor assigned time slice 0 (as well as the subsequent

processors) are able to acknowledge the message in the same time frame.

However, acknowledgement is only allowed when the shared cache

controller is FREE and can therefore check to see if the line is present in the

cache. Additionally, this cache controller will not be able to process any

infcrmation received from the conventional channels until after the delay

associated with checking for a cache line and updating a cache line status has

transpired. If the cache controller is not FREE, then the processor will try

again during the next frame, and the state of the EIB channel remains

ACTIVE. EIBs always have higher priority than other buffered messages, so if

a processor has to buffer the EIB (due to a busy cache), then the EIB will be

processed right after the current cache transaction is finished.

5.5

5.4. Non-readable Reservations in the Shared Cache

Recall that cache coherency requires that a read to any address in

memory returns the last value which was written to that address. However,

this is very difficult to obtain with certainty in a parallel environment, where

packet collisions in the network can cause delays and out-of-order arrivals at

the network nodes. The proposed MCA protocol has another consideration.

Because the specialized EIB requires less overhead than general purpose

messages, an EIB is significantly quicker than other traffic in the network.

Therefore, an invalidation could '"beat" a packet to a particular processor.

Consider the following scenario:

(1) Processor A requests shared block Z from memory node M.

(2) Memory node M receives the request, assembles a packet with block
Z, and puts the packet in its transmit buffer.

(3) While attempting to transmit to processor A, a collision occurs. By
order of the CSMA/CD arbitration scheme, memory node M's
packet waits.

(4) Processor B writes to block Z, and sends the new line to memory
node M.

(5) Memory node M receives the new line from processor B. Assume
that the directory for block Z is overflowing. An EIB occurs.

(6) Processor A receives the EIB. Seeing that the line is not in its cache,
it sets its barrier bit but ignores the invalidation.

(7) Processor A finally receives its packet from memory node M. This
packet contains stale information. The data is no longer coherent.

In order to prevent this from happening, the MCA uses a reservation

required scheme. It works as follows: whenever a shared block is requested,

the block's address is put into the cache before the request is sent to main

5.6

memory. This is called the reservation. The state of the reserved block is

initialized to VALID but NOT READABLE due to LOAD-WAIT.

A valid reservation is required in order to load a block of memory into

the cache. When a requested block is received from main memory, it can

only be put into the cache in a VALID spot, with the correct block address

already in the cache. If such a reservation is found, the data is loaded into the

cache, and the state of the block is changed to VALID, READABLE.

Otherwise, the reservation was canceled by an EIB. When an EIB is received

for any VALID block, the state is changed to INVALID, regardless of the status

of the READABLE bit. When the reservation is canceled (not found), a new

reservation is made, and the cache requests the block again.

5.5. Simultaneous Reads and Writes-Another Coherency Problem

Suppose the MCA is configured with a directory of length thrbe (3), and

that this directory is not overflowing. Furthermore, there are two processors

assigned to each channel. Three processors, on three different channels, have

cached the data. Two of them are performing a sequence of reads, and the

third performs a write. The following events must transpire:

(1) The third processor assembles a packet, and transmits to memory
(because this could cause a collision, it may be quite a few clocks
before the packet is even put on to the bus).

(2) Memory receives the packet, forms a packet of its own with the new
line, and must transmit this packet over three different channels
(let's assume that two packets collide and the third is successfully
transmitted on the first try).

(3) The three processors eventually receive the update packets, at
different times, while two of them are performing a series of reads
to the block.

(4) Six processors send acknowledgement packets back to memory.

5.7

Clearly, it will be difficult in such a scenario to guarantee coherency, that

is, every read performed returns the last value written to memory. The

question is, at what point in time does the write take place? The scenario

above may take over 100 CPU clocks to complete. A policy must be developed

which reconciles the narrow definition of cache coherency with the timing

issues of the parallel environment. The MCA uses a policy which states that

the writing cache is the last processor able to use a modified block, and that it

can do so only after all other processors have received and acknowledged the

update/invalidation. Thus, the write is not considered complete until the

writing processor has received a write-grant from memory. In the scenario

above, the writing cache sets its NOT READABLE bit before step one, and it is

not allowed to use the modified block until the bit is reset (the bit is reset after

the processor receives the write-grant message from memory). This

procedure defines the exact time when a write has taken place, after the

memory sends a write-grant to the processor. This implies that in order to

ensure that a processor never accesses the written value too late (i.e., never

reads a stale value), it will sometimes receive a new value "early". That is, it

may read the updated value before the write is considered complete. What is

guaranteed, however, is that when a processor writes to memory, no other

processor will read a stale value while the write is in progress, because the

written value is not used by the writing processor until after the coherency

actions have completed.

5.8

5.6. Summary of Shared Cache State Bits

The meaning and use of the state bits in the shared cache can be

summarized as follows:

(1) On a READ MISS, a reservation is made, and the bits are set to
VALID, NOT READABLE, LOAD-WAIT. When the requested line arrives
from memory, the status is changed to VALID, READABLE, and the LOAD-
WAIT bit is reset. If, on the other hand, an EIB is received before the line, the
status of the line becomes INVALID, which will force a subsequent
reservation and request when the line arrives from memory.

(2) On a WRITE HIT, the line is set to VALID, NOT READABLE. If an
EIB is received with this configuration, the status remains unchanged. This
configuration allows the writing processor to retain its valid copy of the block.
The NOT READABLE bit is reset after the write-grant message is received.

(3) On a WRITE MISS, a VALID, NOT READABLE reservation is made.
Is the same as a WRITE HIT, except that memory will send the line back with
the write-grant request, at which time the status is changed to VALID,
READABLE.

Figure 5.2 depicts a state diagram showing the possible states and the

transitions between these states.

5.7. Simultaneous Writes-How the Protocol Handles Them

When two writes occur at the same time, or near the same time, and the

values differ, only one value can be used. But which one? Because the

processors are independent, and messages must pass through a network,

there is no real way to determine which processor was "first" and which was

"second." Additionally, two simultaneous writes could "confuse" the

protocol, if two EIBs were to transpire simultaneously. To prevent this

confusion, each directory has an EIB/Update-in-Progress (EIP) bit. This bit

prevents any request from being processed until the coherency actions from a

previous write have completed.

5.9

EIB VALID

rec'd NOT READABLE

SWrite-grant

Write rec'd
Miss

Read VALID Write Flit

HNTRLREADABLE

E(from Read Miss)
EB,

EIB rec'd
INVALID NOT READABLE

LOAD-WAIT

Start
Read Miss

Figure 5.2: Shared Cache Block State Diagram for the MCA Coherency
Protocol.

5.10

The following scenario describes how the MCA enforces coherency in the

simultaneous write situation:

(1) Processors A and B write different values to address Z. Both have
cached the block, so each processor has a write hit. They both change the state
to VALID, NOT READABLE, and send their respective modified blocks to
memory M.

(2) Memory M will receive one of modified blocks first. Without loss of
generalization, assume it is the packet from processor A. If an EIB occurs,
both processors, A and B, receive notice of an invalidation. Since each one
knows it has modified that block (the NOT READABLE bit is set), neither
invalidates. In an update, both caches will put processor A's version of the
block into their lines. In either case (EIB or update), the blocks stay
unreadable.

(3) The packet from processor B is received by memory M. Memory
will buffer this packet until the update from processor A has been completely
handled, and the EIP bit is reset.

(4) Processor A is sent a write-grant, after (a) the EIB is complete,
or (b) the receipt of all update packets has been acknowledged. After processor
A acknowledges the write-grant, the EIP bit is reset. Then processor B's
request is read from the buffer. This request (a WRITE) will cause either an
EIB or an update.

(5) If an EIB is performed, then processor A will now invalidate, since
its NOT READABLE bit is no longer set. Processor B will ignore this EIB, as it
did the first. If an update is used, both caches will receive a new value from
memory, and update their caches. But initially, only processor A will be able
to use the value at this time.

(6) Processor B will get a write-grant from memory. The net result,
regardless of whether EIBs or updates are used, is that memory M contains
the second value received for address Z, and the processor which gets the last
write-grant has a valid block in its cache.

5.8. The Experiment

The MCA simulator was adapted to include the coherency protocol as

described above. Next, the modified simulator was used to collect output

from several configurations in hopes of answering pertinent questions.

5.11

Some of these questions are listed below:

(1) What performance gains are realized when the shared coherent
caching scheme is used? How does this vary as the tasks and configurations
are more demanding?

(2) What size directory (directory length) yields optimum performance?
Does the optimum length change as the number of processors increases?
What affect does increased load on processor buses have on the optimum
directory size?

(3) What are the optimal shared cache parameters (block size, overall
size, associativity)? Do these differ from the private cache parameters? The
previously existing simulator used a 64K, 4-way set associative, 32-byte block
size private cache; [Wai92] asserts that these parameters are near-optimal.

The purpose of these tests was not to prove the architecture itself; the

architecture was proven in extensive testing done in [Wai92]. Rather, the

purpose was to measure the effectiveness of the coherency scheme and the

performance benefits realized by caching shared data.

In order to answer these questions, configurations of 4, 8, 16, 32, 64 and

128 processors were used. The configuratior Nith 4 processors had no bus

sharing among processors, and bus sharing gradually increased as the number

of processors grew. The specific configurations are shown in Table 5.2. For

each configuration, baseline tests were run, using the previous version of the

simulator. The baseline test results (which are used for comparison purposes

in Chapter 6) are shown in Table 5.1.

The first experiment goal was to find an optimum directory size, and to

see if this size varied according to the number of processors on the system.

This was done by running the various configurations with a 64K private

cache and a 32K shared cache, and varying the directory size from zero to four.

5.12

Number Number Number of Percent
EP am Name Of S of Instl CI.1 Uilizion

MATRIXMULT 4 18.4 38.9 87.2
(128 x 128) 8 9.4 20.2 85.6

16 4.9 10.9 82.2
32 2.7 6.5 74.5
64 1.5 4.9 56.2

128 1.0 5.7 30.1

FILTER 4 2.21 4.79 81.4
(64 x 64) 8 1.21 3.03 70.6

16 0.71 2.15 58.9
32 0.46 1.66 49.7
64 0.34 1.45 41.6

128 0.28 1.26 39.3

Table 5.1: Baseline Simulation Results. Baseline Results (System
Performance Using the Previously Existing Version of the MCA Simulator)
for the Six MCA Configurations. Data shown is for the master processor,
which executes the most instructions on the run. Percent utilization and
instruction count for other processors is lower, since these processors spend
more time at barriers waiting for the master processor. Therefore, the master
processor is the critical one in terms of performance.

(1 in millions)

Once the optimum directory size was found, this was used to measure the

improved performance realized by caching the shared data.

Finally, varying the shared cache parameters could help determine

whether or not a dissimilar private and shared cache set-up was indeed a

valid benefit gained by separating the caches. The parameter of primary

interest is line (block) size, but other variables tested include associativity and

overall size.

5.13

4-Processor Configuration

4 Processor Nodes 4 Processor Buses (i CPU per Bus)
4 Shared Memory Nodes 4 Memory Buses
4 Private Memory Nodes (I Shared Mem & I Private Mem per Bus)

8-Processor Configuration

8 Processor Nodes 4 Processor Buses (2 CPUs per Bus)
4 Shared Memory Nodes 4 Memory Buses
8 Private Memory Nodes (0 Shared Mem & 2 Private Mems per Bus)

16-Processor ConfiLuration

16 Processor Nodes 4 Processor Buses (4 CPUs per Bus)
8 Shared Memory Nodes 4 Shared Mem Buses (2 Shared Mems per Bus)

16 Private Memory Nodes 4 Private Mem Buses (4 Priv. Mems per Bus)

32-Processor Configuration

32 Processor Nodes 8 Processor Buses (4 CPUs per Bus)
32 Shared Memory Nodes 8 Shared Mem Buses (4 Shared Mems per Bus)
32 Private Memory Nodes 8 Private Mem Buses (4 Priv. Mems per Bus)

64-Processor Configuration

64 Processor Nodes 8 Processor Buses (8 CPUs per Bus)
32 Shared Memory Nodes 8 Shared Mem Buses (8 Shared Mems per Bus)
64 Private Memory Nodes 8 Private Mem Buses (8 Priv. Mems per Bus)

128-Processor Confimaration

128 Processor Nodes 16 Processor Buses (8 CPUs per Bus)
64 Shared Memory Nodes 16 Shared Mem Buses (4 Shared Mems per Bus)

128 Private Memory Nodes 16 Private Mem Buses (8 Priv. Mems per Bus)

Table 5.2: Six MCA Configurations Used for Testing.

5.14

5.9. Summary

This chapter explained in detail how some the final design decisions for

the MCA coherency protocol were incorporated into the simulator. It then

listed a set of questions which the numerous simulator runs were intended to

answer. A detailed list of these simulations, and the overall findings, are

summarized in the next chapter.

5.15

CHAPTER 6

EXPERIMENT RESULTS

6.1. The Six Test Configurations

Chapter 5 (Table 5.1) listed six MCA configurations which would be used

to test the simulator. Figure 5.3 listed baseline results for each configuration,

using MATRIXMULT (128 x 128 matrix size) and FILTER (64 x 64 median

filtering). This chapter will use an abbreviated naming convention which

combines the application program with the MCA configuration upon which

it is run. For example, FILTER 16 refers to the 16-processor configuration

running the FILTER program; MATRIXMULT 64 refers to the 64-processor

configuration multiplying the 128 x 128 matrices.

6.2. Test Plan Overview

Because the cache invalidation patterns revealed in [Gup92] were

heavily used during the design of the protocol, the first step of the testing was

to see if the invalidation patterns on the MCA simulator matched those in

[Gup92]. The essential goal was to confirm two of their most significant

findings: (1) the majority of global invalidations actually affect relatively few

processors, and (2) many invalidations affect only one processor. Gupta and

Weber speculate in [Gup92] that migratory data behavior largely accounts for

this behavior, as was described in Section 4.5.

The next step was to determine the optimal directory length. Various

configurations of the simulator were tested where only the size of the

directory was changed. These tests provided data so that the relationship

between directory length and overall performance could be analyzed.

6.1

After the optimum directory size was determined, this size was used for

the remainder of the testing. The next step was to determine what

performance gains could be realized by caching the shared (global) data.

Finally, some of the shared cache parameters such as block size and overall

cache size were varied to determine their effect on hit rate and overall

performance.

6.3. Confirming Expected Invalidation Patterns

Chapter 4 theorized that a relatively small limited directory could

sizably decrease the number of global notifications (EIBs) during a program

execution, because the invalidation patterns described by Gupta and Weber

[Gup92] indicate that most invalidations affect only a few processors. The

results from MATRIXMULT 128, MATRIXMULT 32, MATRIXMULT 8,

FILTER 64, FILTER 16, and FILTER 4 were all analyzed, and showed that the

invalidation patterns roughly mirrored those found in [Gup92], thereby

confirming this assumption. The data from the two largest simulations,

MATRJXMULT 128 and FILTER 64, are shown in the Figures 6.1 through 6.3.

Figure 6.1 shows the total number of EIBs performed during the two

simulations, with directory lengths of 0, 2, and 4. A directory length of zero

forces the MCA to perform an EIB for every shared write. With directories,

updates can be performed over the channels listed in the directory, and EIBs

occur only when the directory overflows. The most dramatic decrease occurs

in FILTER. A directory of length 2 eliminates approximately 77% of the EIBs,

and a directory of length 4 eliminates 90% of the EIBs. For MATRIXMULT

128, a directory of length 4 eliminates 80% of the EIBs. With a directory

length of four, the EIB is not a frequent event. For MATRIXMULT 128, only

6.2

679 EIBs occur while the master processor alone executes over 1,000,000

instructions. Figures 6.2 and 6.3 show results from the two applications when

the directory size was set to zero, thereby graphically showing how many

processors are effected by each shared write. Figures 6.4 and 6.5 show the total

number of EIBs for all six configurations (directory size zero). These two

graphs also depict the fraction of the EIBs which affect only one processor. As

can be seen, this fraction is a significant portion of all EIBs, supporting the

premise in [Gup9O] that migratory data behavior accounts for a large

percentage of all invalidations. Thus, a small directory can accommodate

most coherency updates and diminish the need for global notification.

6.4. The Optimum Directory Size

Much of the protocol's design was based on predicted invalidation

patterns, a prediction which has been confirmed. The next task was to

measure the performance as the directory size changed. The same test runs

listed in Section 6.2 were used, that is, MATRIXMULT 128, MATR[XMULT

32, MATRIXMULT 8, FILTER 64, FILTER 16, and FILTER 4. All six of these

simulations were run with directory lengths of 4, 3, 2, 1, and 0 (30 simulations

runs total). The results were rather surprising in that, for all the applications

except one, the best performance was attained using a directory size of 0. A

directory size of 1 performed better in FILTER 4, but only nominally better.

The following table (Table 6.1) lists the number of clocks needed to complete

the program for each simulation. Figures 6.6 and 6.7 graph these results,

using CPU utilization as a function of directory size.

The question is: if the invalidation patterns occurred as predicted, why

does a small directory degrade performance? The reason is because the MCA

6.3

Total Number of EIB's
(bigger directories allow updates in lieu of EIBs)

7000.

50 0 0 ---------------------
.............

S400 I °.=..................m............. °........

'• 000 •......................

eGO=P• =. e.. o.. =.............. ==

1000-

0 2 4 0 2 4
MATIXMULT 128 RLTER 64

Appication and Directory Leng

Figure 6.1: Effect of Varying Directory Sizes on the Number of EIBs for Two of
the Bigger Configurations, MATRIXMULT 128 and FILTER 64. A directory
length of 4 eliminates 80% of the EIBs for MATRIXMULT 128, and 90% of the
EIBs for FILTER 64.

6.4

Invalidation Pattem: MATRIXMULT 128
As Predicted, Most Affect only 1-4 CPUs

-18.1-

117-1 14
113.11 aa109.111 1 aaa1015.1 1

l1_1o 22

81 10

.37 7

110
Z ,

13-1 144

1-. ________________O_______9. S IS I

0 200 400 do 800 1000 200 1400 1000 1800Total EIBs Affecting Given Num. of CPUs

Figure 6.2: Cache Invalidation Pattern for MATRIXMULT 128.

6.5

Invalidation Pattem: FILTER 64
Only 1/3 of EIB's Affect 5 or more CPUs

6154 1

41-44IB

37-40'Io

5736 1 f t tftf

rL 2s-a 129

S21-24 I12

.• 17-20 24

Z 9-12 :318 :

1-4 1
4

0 0 100 1500l 2000 250 3M0 mm 4=0 4500 5M]

Total EIIs Affecting Given Num. of CPUs

Figure 6.3: Cache Invalidation Pattern for FILTER 64.

6.6

Number of EIBs
MATRIXMULT program

12-

1 0 -1 ---------.-- -- - ---.

29 8 ..

LU 6------------------------------
.. ... o.....

E2 1

z

128 64 32 16 8 4

Number of Processors
EBs which ,affec 1 pro or -ElMe which affect 2+ proce=wm

Figure 6.4: Total Number of EIBs for MATRIXMULT Under Varying
Configurations. The bottom portion of each bar represents the number of
EIBs affecting one and only one other processor.

6.7

Number of EIBs
FILTER program

8000O

7000" ----

5 000"
C2

W 4•2

E
z

128 64 32 16 8 4
Number of Processors

MIB EwBshich afec 1 p•rceso=r EBe which affect 2+ p,=emI

Figure 6.5: Total Number of EIBs for FILTER Under Varying Configurations.
The bottom portion of each bar represents the number of EIBs affecting one
and only one other processor.

6.8

DIRECTORY

LENGTH = A 3 2. 1

,APPLICATION

FILTER 4 4.26 4.17 4.12 4.07 4.09

FILTER 16 4.87 3.18 2.54 1.92 1.55

FILTER 64 7.22 5.40 3.72 2.36 0.94

MATRIXMULT 8 21.2 20.1 19.4 19.1 9.0

MATRIXMULT 32 7.8 7.4 6.7 6.1 5.7

MATRIXMULT 128 6.2 5.4 4.3 3.4 2.5

Table 6.1: Number of Clocks (in Millions) Needed to Complete the
Simulation, as the Directory Size Varies. In all cases but one, the completion
time decreases as the size of the directory becomes smaller. Values in bold
print represent performance worse than the baseline results, in which no
shared caching was performed.

requires acknowledgement packets from the CPUs every time memory sends

a packet to a processor.

Consider MATRIXMULT 8, which has two CPUs tuned to each

processor channel. Assume the directory size is four, and that three of the

entries are being used when a write occurs. Memory sends out three packets,

which are received by six CPUs (two CPUs per channel). This process is done

rather easily. However, memory must be sure all CPUs have received the

update messages-this is done by acknowledgement packets. Six CPUs will all

try to send acknowledgements at the same time. Since these six messages

must all be sent on the same frequency (channel), collisions occur. The CPUs

receive the data almost immediately, but the acknowledgement process is

6.9

Master CPU Utilization vs. Directory Size
MATRIXMULT progrm

MATRIXMULT 8 (vd Shined Cache)

----.-- ---- -- - a - MATRIMULT 8 (Mee*u)

804--MATRDMILT 32 (W Shared Cache)

j ~MATRDOOJLT 128 (Vi/ Shared Cafie)

1.............------...................

Directory Longth

Figure 6.6: Percent Utilization of the Master CPU as the Directory Length
Increases, for the MATRIXMULT Program. The dotted lines indicate the
performance of the baseline runs.

6.10

Master CPU Utilization vs. Directory Size
FILTER program

100 4

-4-

"-- FILTER 4 (i Shaud Cmiie)

80" ------------ *-. .--. =---." ------- -.- ----- _E 16(we Ca e

7†††††††††††††††††††††††††††FILTER 16 (DiWO')

FILTER 164 (v Stwud Cmi's)

SFILTER 64 (Dmbnm)

-- - "......T R B r ~ e

1

0 b i i 4
Dormcory Length

Figure 6.7:" Percent Utilization of the Master CPU as the Directory Length
Increases, for the FILTER Program. The dotted lines ,ndicate the performance
of the baseline runs.

6.11

very time-consuming, and it ties up the memory unit for a long time. Close

analysis of simulation data showed that it sometimes took up to 300 clocks for

all the acknowledgements to be processed by memory in this configuration.

When eight processors share the same channel, and the directory size is four,

up to 32 acknowledgement packets may be caught in this bottleneck.

The EIB, on the other hand, occurs on a separate channel from other

network traffic, so it does not hinder normal transactions. Additionally, the

special-purpose nature of the EIB channel allows the entire invalidation

process to transpire quickly. Because this channel is time-division

multiplexed, and each CPU's "acknowledgement" is one byte long, the

message transmission time is sigrificantly smaller than that of standard

acknowledgement packets. The end result, therefore, is that secondary

notifications (EIBs) are not some cumbersome procedure to be dreaded, but

they are, in and of themselves, an efficient way to maintain coherency. This

explains why the simulations with a directory size of zero perform so much

better than the directory-based configurations. As can be seen in Figures 6.6

and 6.7, the performance decrease is more dramatic as the number of

processors per channel increases. This is because more acknowledgement

packets are generated per directory entry. The most dramatic example is

FILTER 64 in Figure 6.7, where only the directory size of zero outperforms the

baseline simulator. In other words, caching FILTER 64 with any size directory

is worse than simply not caching shared data at all.

This implications of this are very important. A directory scheme which

maintains a central directory at main memory, and requires

acknowledgements from the processors to a central directory, is not scalable.

If such a scheme is to indeed be scalable, acknowledgements must be done by

6.12

some other method. Simply eliminating acknowledgements altogether is a

very questionable alternative, since a lost message could render a cache

incoherent.

While the directory performed very poorly on the MCA, the EIBs

performed very well. This scheme, by itself, shows more promise of being

scalable. Shared cache blocks are invalidated quickly, and although the time

required to perform an invalidation does increase with the number of

processors, the time increase is linear.

6.5. Performance Improvement Gained by Shared Caching

Peak performance occurs with a directory of length zero. Once this

conclusion was reached, the goal was to measure the improved performance

realized by caching shared variables, and using this optimum configuration.

Figures 6.8 and 6.9 show the execution time of the two applications

(MATRIXMULT and FILTER) expressed as a function of the number of

processors used in the six test configurations. The shaded region in these two

graphs shows the extra clock cycles required to finish the program when

shared caching is not used. As can be seen, the shared caching always results

in faster execution time.

Figure 6.10 shows the performance increase for all six configurations,

expressed in terms of "X is s% faster than Y". The performance increase was

measured using the following convention [Hen90]:

Let s = speedup percentage, where X is s% faster than Y.

If Exy = (Execution Time of Y),
And ExX = (Execution Time of X),
Then (Exy / Exx) = 1 + (s / 100)

6.13

Performance Increase with Shared Cache
MATRIXMULT program

40

30 -.--. --

I 25

j~15

-- -- ,......

4 1'6 3 64 128
Numbn of PAcanse

1=3 W~h *Wed dab cod"m w=Vno=d n dda =)taa VMas)

Figure 6.8: Execution Time for Baseline MATRIXMULT, and for
MATRIXMULT with Shared Caching, Directory Size of Zero.

6.14

Performance Increase with Shared Cache
FILTER program

5

4 5 ..

1.5.
12.s.

G i 1'6 1- 64 12
Numbw of Moes

CMWkt Ohared dima cod~n M VMU no Owed dima cactdn (Mlhie&)

Figure 6.9: Execution Time for Baseline FILTER, and for FILTER with Shared
Caching, Directory Size of Zero.

6.15

The results show that the speedup characteristics for the two programs

differ. MATRIXMULT has only a slight performance advantage for the

smaller number of processors, while an enormous speedup (128 percent, or

less than half of the execution time) is realized at 128 processors. FILTER, on

the other hand, has a more even speedup across configurations, the peak

percentage speedup occurring at 64 processors.

It is difficult to rate the speedups which are realized. It is true that the

performance improved, but it is hard to know whether or not even better

performance may have been achieved by using a different protocol.

However, we know that a CPU can never exceed a 100% utilization. So we

can use CPU utilization percentage as a basis, and safely say that the protocol

is satisfactory if the utilization figures always improve. As utilization nears

100 percent, we can assert more strongly that the protocol is as effective as

possible. Table 6.2 shows the percent utilization for the test and baseline runs.

There is marked improvement for all six configurations, so we can conclude

that the protocol performs satisfactorily, at least for the two applications

tested. Of the two applications, MATRIXMULT is the more parallelizable

algorithm, so it is expected to achieve higher utilizations, especially for the

larger configurations. The huge leap in utilization for MATRIXMULT 128

(from 30.1% to 67.8%) is very encouraging. It is also worth noting that in the

baseline simulation, the matrix multiply took longer to complete in the

configuration with 128 processors than it did in the 64-processor

configuration. However, with shared caching, performance continued to

improve at 128 processors.

6.16

Performance Increase with Shared Cache
If old MCA took 1.7 nlon clons, ad new MCA look 1 .on Nodocks en new MCA I 70% *W tI= oldc

140 E--'

128
: :*s. - 8 PUs

16 CPUs

64 CPUs

128 CPUs

I 505
0"............................ .set ;

27

2 03 -7 -.

MATRIXMULT FILTER
AppOmuon & Number of Proceseore

Figure 6.10. Performance Increase Attained by Caching Shared Variables. The
formula used for speedup is (Exold / Exnew) = 1 + (s / 100), where s is the
speedup, and Exold, Exnew are the execution times for the baseline simulator
and shared cache simulations, respectively.

6.17

Baseline Percent
Number Number of Percent Utilization w/

Program Name of CPU-;Istuios Utlai Shrd ah

MATRIXMULT 4 18.4 87.2 92.5
(128 x 128) 8 9.4 85.6 90.9

16 4.9 82.2 88.0
32 2.7 74.5 84.2
64 1.5 56.2 75.4

128 1.0 30.1 67.8

FILTER 4 2.21 81.4 95.1
(64 x 64) 8 1.21 70.6 89.7

16 0.71 58.9 80.9
32 0.46 49.7 72.9
64 0.34 41.6 63.8

128 0.28 39.3 54.7

Table 6.2: CPU Utilization for the Master Processor for the Six Test
Configurations.

(lin millions)

6.6. Hit Rates

Cache hit rates are an important concern because the hit rate is a major

factor in overall performance. Figures 6.11 and 6.12 show the hit rate in the

shared cache across all processors in the system. MATRIXMULT had an

average hit rate of 78% across the six configurations; FILTER's average hit rate

was 84%. Because invalidatiofts occur, the shared hit rate is not expected to

reach the high values attained in the private cache (private cache hit rates run

over 99%).

As invalidations affect more processors, the hit rate is subject to decline.

Consider: if processor A is using variable X, and processor B writes to the

block containing X, then processor A will have a miss on the next reference

to X, and fetch the block again. Such invalidations explain why the shared

6.18

Shared Cache Hit Rate
MATRIXMULT program

100

86 -- ------------- ----------

5...
.......

5 - - -....

50 - I-

Number of Processors

Figure 6.11: Hit Rate in the Shared Cache, MATRIXMULT Program, with a
32K Cache, and Block Size of 32 Bytes.

6.19

Shared Cache Hit Rate
FILTER program

100

%95--

_ t W5...............

--

501 .84
21'8

Number of Processors

Figure 6.12: Hit Rate in the Shared Cache, FILTER Program, with a 32K Cache,
and Block Size of 32 Bytes.

6.20

cache hit rates do not approach 99%. Also, the hit rate tends to decline as

more processors are added to a task, because there is greater possibility of an

invalidation when cached blocks are more widely dispersed. While this trend

occurred exactly for FILTER (Figure 6.12), MATRIXMULT (Figure 6.11) has an

unexplained anomaly in that the hit rate bottoms out with 32 processors.

What might cause this? Other factors affecting hit rate are the overall size of

the cache (cache ejections increase when a cache is too small), and the number

of EIBs during the task. While the number of EIBs remained roughly

constant for FILTER (Figure 6.5), the total number of EIBs for MATRIXMULT

is neither constant nor linear over the six test configurations, as Figure 6.4

revealed. A test performed for MATRIXMULT 8 demonstrated that a 256K

size shared cache was needed to prevent unnecessary ejections (See Table 6.3),

and only a 32K cache was used for the MATRIXMULT simulations.

MATRIX-
FILTER 8 MULT 8

Cache Private Shared Clocks Private Shared Clocks
1Size (K) MtRate ItRate (millions) Ft8Rate 8it Rate (millions)

512 .99984 .86822 2.38 .999558 .93420 17.50
256 .99984 .86822 2.38 .999558 .93420 17.50
128 .99984 .86822 2.38 .999555 .93416 17.50

64 .99984 .86822 2.38 .998236 .93359 18.63
32 .99984 .86822 2.38 .986124 .80700 29.41
16 .99973 .85942 2.33 .985557 .80873 29.45

8 .99837 .78196 2.70 N/A N/A N/A

Table 6.3: Hit Rates for Various Shared and Private Cache Sizes, for Both
FILTER 8 and MATRIXMULT 8. When the hit rate does not improve as the
cache size is increased, then the smaller cache is sufficiently large. A 32K
shared and private cache are sufficiently large for FILTER 8. MATRIXMULT 8
requires 256K caches before the hit rate no longer improves, although a 128K
cache is almost sufficient; a sixth decimal place is needed to observe the
difference in the private cache.

6.21

Therefore, the aforementioned anomaly is most likely caused by the non-

linear EIB rate and the undersized cache, though the exact relationship

between these factors and the results shown in Figure 6.12 is unknown.

Finally, the fact that the shared cache had a higher hit rate for a 16K cache

than for a 32K cache for MATRIXMULT 8 is a very surprising (and

unexplained) result. This unusual behavior, unlikely to occur with private

data, illustrates how invalidations and data partitioning are additional factors

which impact the shared hit rate.

Section 4.2.2 mentioned that one potential benefit of establishing a

separate cache for shared data is that the shared cache need not have the same

hardware parameters as the private cache. This concept was tested and found

to be true.

6.7. Varying Shared Cache Parameters

6.7.1. Devising the Experiment to Test Differing Cache Parameters

Line (block) size is one of the most important considerations for cache

design. Too small a block size will result in too many unnecessary fetches.

Because of the overhead required to send packets across the network, it is

generally better to obtain more information per fetch. However, if a block

size is too big, the cache becomes polluted, that is, data is put into the cache

which is never used by the processor.

To test the potential benefit of differing cache parameters, FILTER 8 was

used. As shown in Table 6.3, a 32K cache is sufficiently large for both the

shared and private caches during FILTER 8. Having determined how large a

cache is necessary, the next goal was to find the optimum hit rates as the line

sizes varied in a sufficiently large cache. This information would then be

6.22

used to construct a custom design, to see if a performance gain could be

realized by differing the shared and private cache line sizes.

6.7.2. Determining Optimum Line Sizes for FILTER 8

To ensure that the experiment would not be affected by too small a

cache, both the private and the shared cache sizes were set to 64K (one

increment bigger than the minimum sufficiently large cache). Using this size,

the line sizes were varied between 8 and 128 (by powers of two). Table 6.4

shows the results of the five test runs. The peak hit rate for the shared cache

occurred with a 64-byte block; for the private cache, a 128-byte block yielded

the highest hit rate. The number of clocks required to complete the FILTER

program is also listed for the three best runs.

NUMBER OF
LINE SIZE SHARED PRIVATE CLOCKS TO

L H RATE HIT RATE cOMPLEN

128 .856151 .999949 2,377,465
64 .883315 .999908 2,364,979
32 .868218 .999838 2,377,573
16 .832973 .999629 N/A
8 .774308 .999456 N/A

Table 6.4: Hit Rates and Completion Times for Varying Block Sizes in a 64K
Cache, for FILTER 8.

6.7.3. Different Block Sizes for Each Cache

One more simulation was run. Each cache size was still 64K, but the

block sizes differed; the private cache had a 128-byte block, while the shared

cache used a 64-byte block. This simulation completed in less than 2.27

million clock cycles, over 95,000 cycles faster than the previous best time,

thereby increasing the speedup over 3%. When this experiment was repeated

6.23

for the other FILTER configurations, the 128-byte private block and 64-byte

shared block performed better than the matching block size simulations, for

all FILTER configurations. A summary of the significant FILTER 8 runs is

shown in Table 6.5. The results for all FILTER configurations are shown in

Figure 6.13.

Although this experiment was only performed on one program, it

proved that there is a potential performance benefit to be gained by differing

the block sizes for shared and private data. The FILTER 8 finish times were

nominally different when the cache line sizes were the same for both shared

and private; a significant speedup caused by varying line sizes was only

attained by customizing and varying the two line sizes. Such a benefit can

only be realized by separating the two caches.

NUMBER OF PERCENT
PRIVATE SHARED CLOCKS TO SPEEDUP OVER
LINE SIZE LI•E I SI F COMPLEIT BASELINE

32 N/A 3,030,922 (Baseline)
32 32 2,377,573 21.6%
64 64 2,364,979 22.0%

128 128 2,377,465 21.6%
128 64 2,269,141 25.1%

Table 6.5: Completion Times of FILTER 8 as Line Sizes Vary.

6.24

Effect of Varying Block Size
on C"oletonlime

5 -.

FIER 4

-40-

I A.. LER

3 FILTER128

4.5...... " "•
4 "- -.- - F L T R 1

0.5 -0 "

Basine 32/32 64/64 128(128 128(64
C~che Urm Stm

Figure 6.13. Effect of Varying Block Sizes on FILTER Completion Time. In all
cases, performance improved when the block sizes in the independent caches
were not equal.

6.25

6.8. Conclusion

Initial testing has indicated that the original goal of the thesis, to

improve the performance of the MCA through a shared coherent cache, has

been accomplished. An overflow directory coherency protocol was originally

proposed, but testing showed that the acknowledgement packets demanded by

the directory hindered performance. Fortunately, the secondary notification

scheme (extended invalidation broadcasts via a time-division multiplexed

optical channel) performs very well by itself. Therefore, the proposed

solution to the problem is the coherency protocol which uses no directory, but

a TDM EIB channel.

The next chapter summarizes the lessons learned and suggests

additional research.

6.26

CHAPTER 7

SUMMARY, CONCLUSIONS, AND FUTURE RESEARCH

7.1. Lessons Learned

This research contains results which are useful in the quest to find a

scalable coherency protocol. First, it was shown that even a small directory is

not a satisfactory solution if acknowledgement packets are required to be sent

back to a centralized location. Additionally, it was shown that timedivision

multiplexing is an effective way to collect acknowledgements. Experiment

results showed that a TDM communication channel may be a very effective

ingredient for solving the well-known cache coherency problem. Additional

research which further tests the feasibility of this approach would be very

interesting.

Second, the idea of separating shared and private caches was proposed.

As massively parallel systems become more widespread, this could be an

effective design decision regardless of the protocol chosen. It allows a more

customized shared cache, and frees the private cache of coherency traffic.

Some preliminary results showed that there are benefits to this separation.

Among them, it was shown customized line sizes between the two separate

caches can improve performance.

Third, the research of Gupta and Weber [Gup92] was tested and

independently confirmed. Although this does not provide any new

information, it does solidify their findings.

Fourth, some of the problems associated with maintaining coherency

across a network were examined. Namely, there is no guarantee that

important information will arrive at a destination node in a timely manner.

7.1

One problem encountered was stale data arriving at a cache after an

invalidation has occurred. This is a possibility when a requested packet is

delayed at the transmitter. The reservation required scheme presented in this

thesis is an innovative way to overcome this problem.

7.2. Future MCA Research

There are four programs in the MCA test suite, but only two were used

to evaluate the shared cache performance. This is because the simulator still

has some errors introduced during the software modifications. This research

progressed simultaneously with another project which allowed the MCA

simulator to simulate running multiple tasks at the same time. Thus, the

changes were very extensive, and a few errors remain. Once the remaining

errors are fixed, it would be prudent to run tests on the remaining two

applications, to ensure that the other two programs do not show dramatically

different results which might nullify some of the conclusions already drawn

from this research.

The MCA coherency protocol evolved from a directory-based scheme to

a snooping-based scheme, since the EIBs are broadcast over a common bus. It

would be interesting to enhance the protocol so that it accounts for

exclusiveness. Instead of maintaining a channel-based directory, as was

originally proposed, the shared memory nodes could maintain an overflow

directory based on processor. The directory would be of length one.

Essentially, if one and only one processor has cached a shared variable, then

the EIB could be skipped, and the write-grant issued immediately. This might

improve the protocol.

7.2

7.3. Other Topics of Interest

Acknowledgement packets cripple a centralized directory and hurt its

scalability. However, there may be a way to build some sort of hierarchical

scheme where the acknowledgement packets do not overwhelm a particular

node.

A comprehensive study trying to determine ideal shared block sizes

would also be interesting. Smith [Smi85] has already performed such an

analysis, but that experiment did not study shared and private data

independently. The potential advantage of dissimilar block sizes has already

been demonstrated. A study which is more focused on shared data behavior

could be used determine ideal shared cache parameters.

Compile-time analysis could be used to make a hardware protocol more

efficient. Min and Baer [Min92] have stated that a hybrid between a hardware

and software solution would be an interesting research topic. They propose

letting a hardware protocol help a software protocol. The problem could also

be studied from the opposite perspective, letting the software analysis assist

the hardware protocol. Write-runs and memory-reads are two items in

particular which could be flagged at compile time and improve the

performance of a hardware protocol. Exploiting write-runs would reduce the

amount of network traffic and eliminate some meaningless invalidations.

Memory reads could possibly prevent unfruitful ejections, thereby increasing

the shared cache hit rate.

7.4. Conclusion

This thesis proposed an overflow directory protocol for the MCA. The

overflow directory protocol's secondary notification scheme used a TDM

7.3

optical channel for coherency traffic. Shared data was cached in an

independent cache.

The overflow directory did not work well, because the generated

acknowledgement packets caused too much bus contention. However,

preliminary results indicate that two other ideas have merit, and deserve

further study. In particular, TDM communication seems an efficient way to

broadcast cache invalidations and rapidly collect acknowledgements, without

burdening the overall interconnection network. A TDM scheme could be

developed for any massively parallel machine, electrical or optical. In fact,

time-division multiplexing might be an effective instrument in developing a

scalable coherency protocol. Furthermore, the advantages of split caches (for

shared and private data) have already been discussed. This design decision

could be incorporated into any parallel architecture to realize these benefits.

7.4

BIBLIOGRAPHY

[Arc86] J. Archibald and J.-L. Baer. "Cache Coherence Protocols: Evaluation Using a Multiprocessor
Simulation Model." In ACM Trans. Comp. Sys., vol. 4, no. 4, pp. 273-298, Nov. 1986.

[Cen78] L.M. Censier and P. Feautrier. "A New Solution to Coherence Problems in Multicache
Systems." In IEEE Trans. on Computers, pp. 1112-1118, 1978.

[Cha90] D. Chaiken, C. Fields, K. Kurihara, and A. Agarwal. "Directory-Based Cache Coherence in
Large-Scale Multiprocessors." In IEEE Computer, vol. 23, no. 6, pp. 49-58, Jun. 1990.

[Che88] H. Cheong and A.V. Veidenbaum. "A Cache Coherence Scheme with Fast Selective
Invalidation." In Proc. of the 15th Int. Sym. on Comp. Arch. (IEEE), pp. 299-307, 1988.

[Egg88] S.J. Eggers and R.H. Katz. "A Characterization of Sharing in Parallel Programs and Its
Application to Coherency Protocol Evaluation." In Proc. of the 15th Int. Sym. on Comp. Arch. (IEEE),
pp. 373-382, 1988.

[For93] F. Forghieri, A. Bononi, and P.R. Prucnal. "Novel Packet Architecture for Ultrafast
All-Optical Networks." In OFC/IOOC '93 Technical Digest, Feb 21-26,1993, vol. 4, San Jose, CA. Pp.
198-199, 1993.

[Fra84] S.J. Frank. 'Tightly Coupled Multiprocessor System Speeds Memory Access Times" In
Electronics, vol. 54, no. 1, pp. 164-169, Jan. 12, 1984.

[Gla93] B.S. Glance, J.M. Wiesenfeld, U. Koren, and R.W. Wilson. "New Advances on Optical
Components Needed for FDM Optical Networks." In IEEE Journal of Lightwave Tech., vol. 11, no. 5/6,
pp. 882-889, May/Jun. 1993.

[Goo83] J.R. Goodman. "Using Cache Memory to Reduce Processor-Memory Traffic." In Proc. of the
10th Int. Sym. on Comp. Arch. (IEEE), pp. 124-131,1983.

[Gup92] A. Gupta and W.-D. Weber. "Cache Invalidation Patterns in Shared-Memory
Multiprocessors." In IEEE Trans. on Computers, vol. 41, no. 7, pp. 794-810, Jul. 1992.

[Han88] G. Hanke. "Signal Processing at 4.5 GBit/S with SI-ICs for Optical Transmission Systems."
In MTT-S Digest (IEEE), pp. 853-855,1988.

[Hen9O] John L. Hennessy and David A. Patterson. Computer Architecture: A Ouantitative
Approach. Morgan Kaufmann Publishers, San Mateo, CA, 1990.

[Hil89] M.D. Hill and Aj. Smith. "Evaluating Associativity in CPU Caches." In IEEE Trans. on
Computers, vol. 38, no. 12, pp. 1612-1630, Jan. 1990.

[Kat85] R.H. Katz, S.J. Eggers, D.A. Wood, C.L. Perkins, and R.G. Sheldon. "Implementing a Cache
Consistency Protocol." In Proc. of the 12th Int. Sym. on Comp. Arch. (IEEE), pp. 276-283,1985.

[Kar93] M.J. Karol and B. Glance. "Performance of the PAC Optical Packet Network." In IEEE Journal
of Lightwave Tech., vol. 11, no. 8, pp. 1394-1399, Aug. 1993.

vii

[KSR92] Kendall Square Research. 'Technical Summary of the KSR1." Kendall Square Research,
Waltham, MA, 1992.

[Len92] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, et. al. '"The Stanford
Dash Multiprocessor." In IEEE Computer, vol. 25, no. 3, pp. 63-79, Mar. 1992.

[OKr90] B.W. O'Krafka and A.R. Newton. "An Empirical Evaluation of TWo Memory-Efficient
Directory Methods." In Proc. of the 17th Int. Sym. on Comp. Arch. (IEEE), pp. 138-147,1990.

[Min92] S.L. Min and J.-L. Baer. "Design and Analysis of a Scalable Cache Coherence Scheme
Based on Clocks and Timestamps." In IEEE Trans. on Parallel and Dist. Sys., vol. 3, no. 1, pp. 25-43,
Jan. 1992.

[Pap84] M.S. Papamarcos and J.H. Patel. "A Low-Overhead Coherence Solution for Multiprocessors
with Private Cache Memories." In Proc. of the 11th Int. Sym. on Comp. Arch. (IEEE), pp. 348-354, 1984.

[Prz88] S. Przybylski, M. Horowitz, and J. Hennessy. "Performance Tradeoffs in Cache Design."
In Proc. of the 15th Int. Sym. on Comp. Arch. (IEEE), pp. 220-298, 1988.

[Smi82] A.J. Smith. "Cache Memories." In Computing Surveys (ACM), vol. 14, no. 3, pp. 473-530,
September 1982.

[Smi85] J.E. Smith and J.R. Goodman. "Instruction Cache Replacement Policies and
Organizations." In IEEE Trans. on Computers, vol. C-34, no. 3, pp. 234-241, March 1985.

[Smi87] A.J. Smith. 'line (Block) Size Choice for CPU Cache Memories." In IEEE Trans. on
Computers, pp. 1063-1075, vol. C-36, no. 9, Sept. 1987.

[Ste90] P. Stenstr6m. "A Survey of Cache Coherence Schemes for Multiprocessors." In IEEE
Computer, vol. 23, no. 6, pp. 12-24. 1990.

[Swe86] P. Sweazey and A.J. Smith. "A Class of Compatable Cache Consistency Protocols and
Their Support by the IEEE Futurebus." In Proc. of the 13th Int. Sym. on Comp. Arch. (IEEE), pp.
414-423, 1986.

[Tha88] C.P. Thacker, L.C. Stewart, and E.H. Satterthwaite, Jr. "Firefly: A Multiprocessor
Workstation." In IEEE Trans. on Computers, vol. 37, no. 8, pp. 909-920, Aug. 1988.

[Tuc87] R.S. Tucker, G. Eisenstein, S.K. Korotky, et. al. "Optical Time-Division Multiplexed Fiber
Transmission Using Ti:LiNbO Waveguide Switch/Modulators." In Procedings, Int. Sym. on
Global Comm., pp. 1302-1304, 1i87.

[Wai9l] T.S. Wailes and D.G. Meyer. "Multiple Channel Architecture: A New Optical
Interconnection Strategy for Massively Parallel Computers." In IEEE Journal of Lightwave Tech.,
vol. 9, no. 12, pp. 1702-1716, Dec. 1991.

[Wai92] T.S. Wailes. "Multiple Channel Architecture: A New Optical Interconnection Strategy
for Massively Parallel Computers." Ph.D. thesis, Purdue University, 1992.

viii

VITA

Captain John A. Reisner was born 12 August 1963 on Cape Cod,

Massachusetts. He graduated from Chatham High School in 1981. He earned

a Bachelor of Science degree in Computer Science from the University of

Lowell in 1985, where he was commissioned upon graduation as an Air Force

Second Lieutenant. From 1986 until 1992 he served as a Computer Analyst,

supporting the software platform used by the battle staff on the Strategic Air

Command's Airborne Command Post, also known as Looking Glass. During

part of that assignment, he was put on flight crew as an Airborne Computer

Analyst. In May of 1992 he entered the Graduate School of Engineering, Air

Force Institute of Technology, to earn a Master of Science degree in Computer

Systems.

Permanent Address:

21 Carolyn Drive
Chatham, MA 02633

ix

form Approuvd

REPORT DOCUMENTATION PAGE WO Nu.o0/ 0J018d

Public reportng burden for this collection of information is estimated to averaqe I hour per resoonse including tne time for reviewminj inst•urtionn v.,rr nq, -. sting jit a sour•es
gathering and maintaining the data needed, and comp•etiny and reiireiny the .jllectiOcn it iniormaticn 's•nd LOimnni.ii reqwdinqj this buidi ii i-sti.ite i ai,, A)thet •4 .•et Of vhi
collection of information, including suggestion$ for rid. ing this Wurden it, Ndskingint ivi. *kdd imrers i% S ivice%, r ouatijije tei fo intir i w-.thr iir 1.)i.... . i. j11,Is. is ltf cre.insi
DavisHighway, Suite 1204. ArlingtnO. VA 22202-4302.1 iri to the Offite o M in4-aerment -amndud•yet ~i'perwok K•.ductw:i Prolet (/04 Uild). W -1, nqti |IL ,lO)O J

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1993 Master's Thesis

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

DESIGN OF A SHARED COHERENT C-aC
FOR A MULTIPLE CHANNEL ARCHITECTURE

6. AUTHOR(S)

John A. Reisner, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology
WPAFB, OH 45433 AFIT/GCS/ENG/93D-19

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution Unlimited

13. ABSTRACT (Maximum 200 words) Abstract

The Multiple Channel Architecture (MWA) is a recently proposed computer
architecture which uses fiber optic communications to overccme many of the
problems associated with interconnection networks. There exists a detailed
MCA simulator which faithfully simulates an MCA system, however, the original
version of the simulator did not cache shared data. In order to improve the
performance of the MCA, a cache coherency protocol was developed and implemented
in the simulator. The protocol has two features which are significant: (1) a
time-division multiplexed (TDM) cunmunication bus is used for coherency traffic,
and (2) the shared data is cached in an independent cache. The modified
simulator was then used to test the protocol. Two applications and six test
configurations were used throughout the testing. Experiment results showed
that the protocol consistently improved system performance. Also, a
proof-of-concept experiment indicated that performance inprovements can be
attained by varying cache parameters between the independent shared and
private data caches.

14. SUBJECT TERMS 15. NUMBER OF PAGES
cache design, cache coherence, shared nmeiry ill
multiprocessors, tine-division multiplexing 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard For'n 298 (Rev 2 89)
.",h I .5s srI2.i

